IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p382-d130601.html
   My bibliography  Save this article

Effect of Surface Thermal Resistance on the Simulation Accuracy of the Condensation Risk Assessment for a High-Performance Window

Author

Listed:
  • So Young Koo

    (Department of Architectural Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea)

  • Sihyun Park

    (Department of Architectural Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea)

  • Jin-Hee Song

    (Department of Architectural Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea)

  • Seung-Yeong Song

    (Department of Architectural Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea)

Abstract

The accuracy of condensation risk assessment depends on the accuracy of the measured or calculated temperatures. The existing 2D simulation method provides sufficiently accurate results for evaluating average performance values, such as U-values. However, the accuracy of predicting the temperatures in the local areas such as the edge-of-glazing and the frame has been questioned. This study analyzes the effect of the surface thermal resistance on the accuracy of the condensation risk assessment for high-performance windows. Experiments and three-dimensional simulations were performed for a triple-glazed window. The differences in results between the basic experimental test and the simulations with several different applied boundary conditions were analyzed. The results show that, in the simulations, a small change in the surface thermal resistance has no significant effect on the accuracy of the condensation risk assessment of the center-of-glazing or the frame. However, for the edge-of-glazing, the accuracy of predicting the condensation risk was significantly improved by using the increased local surface thermal resistance with the simulation. By employing the reduced radiation and convection at the edges or junctions between two surfaces, the error between the measured and calculated temperature factors can be reduced to less than 3%.

Suggested Citation

  • So Young Koo & Sihyun Park & Jin-Hee Song & Seung-Yeong Song, 2018. "Effect of Surface Thermal Resistance on the Simulation Accuracy of the Condensation Risk Assessment for a High-Performance Window," Energies, MDPI, vol. 11(2), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:382-:d:130601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goopyo Hong & Daeung Danny Kim & Byungseon Sean Kim, 2016. "Experimental Investigation of Thermal Behaviors in Window Systems by Monitoring of Surface Condensation Using Full-Scale Measurements and Simulation Tools," Energies, MDPI, vol. 9(11), pages 1-16, November.
    2. Mi-Su Shin & Kyu-Nam Rhee & Ji-Yong Yu & Gun-Joo Jung, 2017. "Determination of Equivalent Thermal Conductivity of Window Spacers in Consideration of Condensation Prevention and Energy Saving Performance," Energies, MDPI, vol. 10(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    2. Younhee Choi & Younghoon Lim & Joowook Kim & Doosam Song, 2020. "Why Does a High Humidity Level Form in Low-Income Households Despite Low Water Vapor Generation?," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    3. Borys Basok & Borys Davydenko & Volodymyr Novikov & Anatoliy M. Pavlenko & Maryna Novitska & Karolina Sadko & Svitlana Goncharuk, 2022. "Evaluation of Heat Transfer Rates through Transparent Dividing Structures," Energies, MDPI, vol. 15(13), pages 1-16, July.
    4. Giorgio Baldinelli & Agnieszka Lechowska & Francesco Bianchi & Jacek Schnotale, 2020. "Sensitivity Analysis of Window Frame Components Effect on Thermal Transmittance," Energies, MDPI, vol. 13(11), pages 1-12, June.
    5. Kwan Byum Maeng & Jiyeon Jung & Yoonmo Koo, 2019. "Quantitative Analysis of Consumer Preferences of Windows Set in South Korea: The Role of Energy Efficiency Levels," Energies, MDPI, vol. 12(9), pages 1-12, May.
    6. Sihyun Park & Seung-Yeong Song, 2019. "Evaluation of Alternatives for Improving the Thermal Resistance of Window Glazing Edges," Energies, MDPI, vol. 12(2), pages 1-18, January.
    7. Tullio de Rubeis & Mirco Muttillo & Iole Nardi & Leonardo Pantoli & Vincenzo Stornelli & Dario Ambrosini, 2019. "Integrated Measuring and Control System for Thermal Analysis of Buildings Components in Hot Box Experiments," Energies, MDPI, vol. 12(11), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sihyun Park & Seung-Yeong Song, 2019. "Evaluation of Alternatives for Improving the Thermal Resistance of Window Glazing Edges," Energies, MDPI, vol. 12(2), pages 1-18, January.
    2. Seo-Hoon Kim & Jung-Hun Lee & Jong-Hun Kim & Seung-Hwan Yoo & Hak-Geun Jeong, 2018. "The Feasibility of Improving the Accuracy of In Situ Measurements in the Air-Surface Temperature Ratio Method," Energies, MDPI, vol. 11(7), pages 1-18, July.
    3. Seo-Hoon Kim & Jong-Hun Kim & Hak-Geun Jeong & Kyoo-Dong Song, 2018. "Reliability Field Test of the Air–Surface Temperature Ratio Method for In Situ Measurement of U-Values," Energies, MDPI, vol. 11(4), pages 1-15, March.
    4. Namhyuck Ahn & Sanghoon Park, 2020. "Heat Transfer Analysis of Timber Windows with Different Wood Species and Anatomical Direction," Energies, MDPI, vol. 13(22), pages 1-15, November.
    5. Borys Basok & Borys Davydenko & Volodymyr Novikov & Anatoliy M. Pavlenko & Maryna Novitska & Karolina Sadko & Svitlana Goncharuk, 2022. "Evaluation of Heat Transfer Rates through Transparent Dividing Structures," Energies, MDPI, vol. 15(13), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:382-:d:130601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.