IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p361-d130133.html
   My bibliography  Save this article

Comparison of Positive Streamers in Liquid Dielectrics with and without Nanoparticles Simulated with Finite-Element Software

Author

Listed:
  • Juan Velasco

    (Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI), Universidad Politécnica de Madrid (UPM), Ronda de Valencia 3, 28012 Madrid, Spain
    These authors contributed equally to this work.)

  • Ricardo Frascella

    (Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI), Universidad Politécnica de Madrid (UPM), Ronda de Valencia 3, 28012 Madrid, Spain
    These authors contributed equally to this work.)

  • Ricardo Albarracín

    (Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI), Universidad Politécnica de Madrid (UPM), Ronda de Valencia 3, 28012 Madrid, Spain)

  • Juan Carlos Burgos

    (Electrical Engineering Department, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain)

  • Ming Dong

    (State Key Laboratory of Electrical Insulation for Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

  • Ming Ren

    (State Key Laboratory of Electrical Insulation for Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

  • Li Yang

    (State Key Laboratory of Electrical Insulation for Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

In this paper, a comparison of positive streamer diffusion propagation is carried out in three configurations of oil transformers: mineral transformer oil, mineral oil with solid dielectric barriers, and a nanofluid. The results have been solved using a finite-element method with a two-dimensional (2D) axi-symmetric space dimension selected. Additionally, previous results from other research has been reviewed to compare the results obtained. As expected, it is confirmed that the nanoparticles improve the dielectric properties of the mineral oil. In addition, it is observed that the dielectric solid blocks the propagation of the streamer when it is submerged with a horizontal orientation, thus perpendicular to the applied electric field. The computer used, with four cores (each 3.4 GHz) and 16 GB of RAM, was not sufficient for performing the simulations of the models with great precision. However, with these first models, the tendency of the dielectric behavior of the oil was obtained for the three cases in which the streamer was acting through the transformer oil. The simulation of these models, in the future, in a supercomputer with a high performance in terms of RAM memory may allow us to predict, as an example, the best concentration of nanoparticles to retard the streamer inception. Finally, other dielectric issues will be predicted using these models, such as to analyze the advantages and drawbacks of the presence of dielectrics inside the oil transformer.

Suggested Citation

  • Juan Velasco & Ricardo Frascella & Ricardo Albarracín & Juan Carlos Burgos & Ming Dong & Ming Ren & Li Yang, 2018. "Comparison of Positive Streamers in Liquid Dielectrics with and without Nanoparticles Simulated with Finite-Element Software," Energies, MDPI, vol. 11(2), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:361-:d:130133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/361/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/361/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ningchuan Liang & Ruijin Liao & Min Xiang & Yang Mo & Yuan Yuan, 2018. "Effect of Nano Al 2 O 3 Doping on Thermal Aging Properties of Oil-Paper Insulation," Energies, MDPI, vol. 11(5), pages 1-12, May.
    2. Issouf Fofana & U. Mohan Rao, 2018. "Engineering Dielectric Liquid Applications," Energies, MDPI, vol. 11(10), pages 1-4, October.
    3. Reza Aghayari & Heydar Maddah & Mohammad Hossein Ahmadi & Wei-Mon Yan & Nahid Ghasemi, 2018. "Measurement and Artificial Neural Network Modeling of Electrical Conductivity of CuO/Glycerol Nanofluids at Various Thermal and Concentration Conditions," Energies, MDPI, vol. 11(5), pages 1-16, May.
    4. Zhongliu Zhou & Yuanxiang Zhou & Xin Huang & Yunxiao Zhang & Mingyuan Wang & Shaowei Guo, 2018. "Feature Extraction and Comprehension of Partial Discharge Characteristics in Transformer Oil from Rated AC Frequency to Very Low Frequency," Energies, MDPI, vol. 11(7), pages 1-17, July.
    5. Mauricio Aljure & Marley Becerra & Mattias E. Karlsson, 2018. "Streamer Inception from Ultra-Sharp Needles in Mineral Oil Based Nanofluids," Energies, MDPI, vol. 11(8), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:361-:d:130133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.