IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p202-d126985.html
   My bibliography  Save this article

Optimization of Pure-Component LNG Cascade Processes with Heat Integration

Author

Listed:
  • Oddmar Eiksund

    (Department of Engineering and Safety, UiT The Arctic University of Norway, 9037 Tromsø, Norway)

  • Eivind Brodal

    (Department of Engineering and Safety IVT, UiT The Arctic University of Norway, 9037 Tromsø, Norway)

  • Steven Jackson

    (Department of Engineering and Safety IVT, UiT The Arctic University of Norway, 9037 Tromsø, Norway)

Abstract

Liquefaction of natural gas is an energy-intensive process in which the energy efficiency depends on the number of compressors stages and the heat integration scheme. The aim of the study is to systematically evaluate process performance of pure component cascade processes, present optimized designs for all relevant numbers of compression stages and compare energy consumption between processes with differing levels of complexity. An original method for the evaluation of process performance is developed that utilizes as little human interaction as possible, making it suitable for optimization. This study shows that a pure-component cascade process using the three refrigerants R290, R1150 and R50 must have at least 11 stages to equal the energy efficiency of the best mixed refrigerant process. An optimized configuration for an 11-stage process scheme operating at 20 ∘ C ambient temperature is described in detail.

Suggested Citation

  • Oddmar Eiksund & Eivind Brodal & Steven Jackson, 2018. "Optimization of Pure-Component LNG Cascade Processes with Heat Integration," Energies, MDPI, vol. 11(1), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:202-:d:126985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/202/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehsan Barekat-Rezaei & Mahmood Farzaneh-Gord & Alireza Arjomand & Mohsen Jannatabadi & Mohammad Hossein Ahmadi & Wei-Mon Yan, 2018. "Thermo–Economical Evaluation of Producing Liquefied Natural Gas and Natural Gas Liquids from Flare Gases," Energies, MDPI, vol. 11(7), pages 1-17, July.
    2. Tak, Kyungjae & Choi, Jiwon & Ryu, Jun-Hyung & Moon, Il, 2020. "Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process," Energy, Elsevier, vol. 206(C).
    3. Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:202-:d:126985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.