IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3406-d187929.html
   My bibliography  Save this article

Coordination Control Method Suitable for Practical Engineering Applications for Distributed Power Flow Controller (DPFC)

Author

Listed:
  • Mengmeng Xiao

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Shaorong Wang

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

To control multiple series units of distributed power flow controller (DPFC), a hierarchical control method is proposed. This coordination control system consists of a coordination controller and multiple series unit controllers. According to the demand of power flow ordered by a dispatch center, the corresponding series-compensated voltage is calculated by a high-level controller and transferred to each series unit controller. Comparing the targeted compensated voltage with actual injected voltage, the modulation signal of the converter will be modified to change the power flow accurately. The DPFC system model is built in Power Systems Computer Aided Design/ Electromagnetic Transients including DC (PSCAD/EMTDC). The simulation result indicates that the proposed hierarchical control method is effective and can be considered as an option for practical engineering applications in the future.

Suggested Citation

  • Mengmeng Xiao & Shaorong Wang, 2018. "Coordination Control Method Suitable for Practical Engineering Applications for Distributed Power Flow Controller (DPFC)," Energies, MDPI, vol. 11(12), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3406-:d:187929
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3406/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3406/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yi Tang & Yuqian Liu & Jia Ning & Jingbo Zhao, 2017. "Multi-Time Scale Coordinated Scheduling Strategy with Distributed Power Flow Controllers for Minimizing Wind Power Spillage," Energies, MDPI, vol. 10(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Lin & Wei Lin & Wei Wu & Zhenshan Zhu, 2023. "Optimal Scheduling of Power Systems with High Proportions of Renewable Energy Accounting for Operational Flexibility," Energies, MDPI, vol. 16(14), pages 1-18, July.
    2. Panos Kotsampopoulos & Pavlos Georgilakis & Dimitris T. Lagos & Vasilis Kleftakis & Nikos Hatziargyriou, 2019. "FACTS Providing Grid Services: Applications and Testing," Energies, MDPI, vol. 12(13), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3406-:d:187929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.