IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3130-d182355.html
   My bibliography  Save this article

An Improved Method for Discerning Broken Rotor Bar Fault and Load Oscillation in Induction Motors

Author

Listed:
  • Liling Sun

    (School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China)

  • Boqiang Xu

    (School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China)

Abstract

A few methods for discerning broken rotor bar (BRB) fault and load oscillation in induction motors have been reported in the literature. However, they all perhaps inevitably fail in adverse cases in which these two phenomena are simultaneously present. To tackle this problem, an improved method for discerning BRB fault and load oscillation is proposed in this paper based on the following work. On the one hand, the theoretical basis is analytically extended to include such an adverse case, yielding some important findings on the spectra of the instantaneous reactive and active powers. A novel strategy is thus outlined to correctly discern BRB fault and load oscillation even when simultaneously present. On the other hand, Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) is adopted as the spectral analysis technique to deal with the instantaneous reactive and active powers, yielding a certain improvement compared to the existing methods, adopting Fast Fourier Transform (FFT). Simulation and experimental results demonstrate that the proposed method can correctly discern BRB fault and load oscillation even when simultaneously present.

Suggested Citation

  • Liling Sun & Boqiang Xu, 2018. "An Improved Method for Discerning Broken Rotor Bar Fault and Load Oscillation in Induction Motors," Energies, MDPI, vol. 11(11), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3130-:d:182355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3130/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyue Liu & Yan Yan & Kaibo Hu & Shan Zhang & Hongjie Li & Zhen Zhang & Tingna Shi, 2022. "Fault Diagnosis of Rotor Broken Bar in Induction Motor Based on Successive Variational Mode Decomposition," Energies, MDPI, vol. 15(3), pages 1-16, February.
    2. Jing Tang & Yongheng Yang & Jie Chen & Ruichang Qiu & Zhigang Liu, 2019. "Characteristics Analysis and Measurement of Inverter-Fed Induction Motors for Stator and Rotor Fault Detection," Energies, MDPI, vol. 13(1), pages 1-17, December.
    3. Mitja Nemec & Vanja Ambrožič & Rastko Fišer & David Nedeljković & Klemen Drobnič, 2019. "Induction Motor Broken Rotor Bar Detection Based on Rotor Flux Angle Monitoring," Energies, MDPI, vol. 12(5), pages 1-17, February.
    4. Petr Kacor & Petr Bernat & Petr Moldrik, 2021. "Utilization of Two Sensors in Offline Diagnosis of Squirrel-Cage Rotors of Asynchronous Motors," Energies, MDPI, vol. 14(20), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3130-:d:182355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.