IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2971-d179704.html
   My bibliography  Save this article

Recent Advances in Computational Modeling of Primary Atomization of Liquid Fuel Sprays

Author

Listed:
  • Junji Shinjo

    (Department of Mechanical, Electrical and Electronic Engineering, Shimane University, Matsue 690-8504, Japan)

Abstract

Recent advances in modeling primary atomization in order to enable accurate practical-scale jet spray simulation are reviewed. Since the Eulerian–Lagrangian method is most widely used in academic studies and industrial applications, in which the continuous gas phase is treated in the Eulerian manner and droplets are calculated as Lagrangian point particles, the main focus is placed on improvement within this framework, especially focusing on primary atomization where modeling is the weakest. First, limitations of the conventional methods are described and then novel modeling proposals intended to tackle these issues are covered. These new modeling proposals include the Eulerian surface density approach, and the hybrid Eulerian surface/Lagrangian subgrid droplet generation approach. Compared to conventional simple yet sometimes non-physical models, recent models try to include more physical findings in primary atomization which have been obtained through experiments or direct numerical simulation (DNS). Model accuracy ranges from one that still needs some adjustment using experimental or DNS data to one which is totally self-closed so that no parameter tuning is necessary. These models have the potential to overcome the long-recognized bottleneck in primary atomization modeling and thus to improve the accuracy of whole spray simulation, and may greatly help to improve the spray design for higher combustion efficiency.

Suggested Citation

  • Junji Shinjo, 2018. "Recent Advances in Computational Modeling of Primary Atomization of Liquid Fuel Sprays," Energies, MDPI, vol. 11(11), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2971-:d:179704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2971/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2971/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoud Gadalla & Jeevananthan Kannan & Bulut Tekgül & Shervin Karimkashi & Ossi Kaario & Ville Vuorinen, 2020. "Large-Eddy Simulation of ECN Spray A: Sensitivity Study on Modeling Assumptions," Energies, MDPI, vol. 13(13), pages 1-24, July.
    2. Robert Keser & Alberto Ceschin & Michele Battistoni & Hong G. Im & Hrvoje Jasak, 2020. "Development of a Eulerian Multi-Fluid Solver for Dense Spray Applications in OpenFOAM," Energies, MDPI, vol. 13(18), pages 1-18, September.
    3. Krystian Czernek & Michał Hyrycz & Andżelika Krupińska & Magdalena Matuszak & Marek Ochowiak & Stanisław Witczak & Sylwia Włodarczak, 2021. "State-of-the-Art Review of Effervescent-Swirl Atomizers," Energies, MDPI, vol. 14(10), pages 1-30, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2971-:d:179704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.