IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2918-d178420.html
   My bibliography  Save this article

An Extended Kalman Filter Approach for Accurate Instantaneous Dynamic Phasor Estimation

Author

Listed:
  • Matilde De Apráiz

    (Department Computer Science and Electronics, University of Cantabria, 39005 Santander, Spain)

  • Ramón I. Diego

    (Department Computer Science and Electronics, University of Cantabria, 39005 Santander, Spain)

  • Julio Barros

    (Department Computer Science and Electronics, University of Cantabria, 39005 Santander, Spain)

Abstract

This paper proposes the application of a non-linear Extended Kalman Filter (EKF) for accurate instantaneous dynamic phasor estimation. An EKF-based algorithm is proposed to better adapt to the dynamic measurement requirements and to provide real-time tracking of the fundamental harmonic components and power system frequencies. This method is evaluated using dynamic compliance tests defined in the IEEE C37.118.1-2011 synchrophasor measurement standard, providing promising results in phasor and frequency estimation, compliant with the accuracy required in the case of off-nominal frequency, amplitude and phase angle modulations, frequency ramps, and step changes in magnitude and phase angle. An important additional feature of the method is its capability for real-time detection of transient disturbances in voltage or current waveforms using the residual of the filter, which enables flagging of the estimation for suitable processing.

Suggested Citation

  • Matilde De Apráiz & Ramón I. Diego & Julio Barros, 2018. "An Extended Kalman Filter Approach for Accurate Instantaneous Dynamic Phasor Estimation," Energies, MDPI, vol. 11(11), pages 1-11, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2918-:d:178420
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2918/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2918/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Babak Jafarpisheh & Anamitra Pal, 2021. "A Robust Algorithm for Real-Time Phasor and Frequency Estimation under Diverse System Conditions," Energies, MDPI, vol. 14(21), pages 1-20, November.
    2. Yassine Amirat & Zakarya Oubrahim & Hafiz Ahmed & Mohamed Benbouzid & Tianzhen Wang, 2020. "Phasor Estimation for Grid Power Monitoring: Least Square vs. Linear Kalman Filter," Energies, MDPI, vol. 13(10), pages 1-15, May.
    3. Juan-José González de-la-Rosa & Manuel Pérez-Donsión, 2020. "Special Issue “Analysis for Power Quality Monitoring”," Energies, MDPI, vol. 13(3), pages 1-6, January.
    4. Malgorzata Binek & Andrzej Kanicki & Pawel Rozga, 2021. "Application of an Artificial Neural Network for Measurements of Synchrophasor Indicators in the Power System," Energies, MDPI, vol. 14(9), pages 1-14, April.
    5. Zakarya Oubrahim & Yassine Amirat & Mohamed Benbouzid & Mohammed Ouassaid, 2023. "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-41, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2918-:d:178420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.