IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2773-d175988.html
   My bibliography  Save this article

Prediction of the Maximum Erosion Rate of Gas–Solid Two-Phase Flow Pipelines

Author

Listed:
  • Jingyuan Xu

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
    Gas Transmission Management Bureau, Southwest Oil & Gas Field Company, PetroChina, Chengdu 610213, China)

  • Zhanghua Lian

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Jian Hu

    (Gas Transmission Management Bureau, Southwest Oil & Gas Field Company, PetroChina, Chengdu 610213, China)

  • Min Luo

    (Gas Transmission Management Bureau, Southwest Oil & Gas Field Company, PetroChina, Chengdu 610213, China)

Abstract

Erosion is one of the important reasons for the thickness decrease and perforation of the pipe walls. Understanding the gas–solid two-phase flow pipe erosion mechanism is the basis for monitoring pipe erosion. According to the structural characteristics and working conditions of the gas–solid two-phase flow pipeline in a gas transmission station, a gas–solid two-phase flow pipe erosion finite element model was established and validated by combining it with field test data. Then, the gas–solid two-phase flow pipeline erosion characteristics under different pressures, solid contents, throttle valve openings, and pipe diameters were studied. On this basis, a maximum erosion rate prediction equation was put forward after verification by using actual wall thickness detection data. Results show the following: (1) The absolute error of the maximum erosion rate between the model results and the test datum is ≤10.75%. (2) The outer cambered surface of the bend after the throttle valve is the most seriously eroded areas. (3) The maximum erosion rate increases with pressure, solid content and throttle valve opening increasing, but, along with the change of the pipe diameter, the maximum erosion rate increases at first and then decreases with pipe diameter increasing for throttle valve openings of 20% and 30%, and it decreases with pipe diameter increasing for a throttle valve opening of 50%. (4) A maximum erosion rate prediction equation, involving pressure, solid content, opening of the throttle valve, and pipe diameter, is proposed and is verified that the absolute percentage error between the prediction equation calculation results and the field test datum is ≤11.11%. It would seem that this maximum erosion rate prediction equation effectively improves the accuracy of predicting the gas–solid two-phase flow pipe erosion rate in a gas transmission station.

Suggested Citation

  • Jingyuan Xu & Zhanghua Lian & Jian Hu & Min Luo, 2018. "Prediction of the Maximum Erosion Rate of Gas–Solid Two-Phase Flow Pipelines," Energies, MDPI, vol. 11(10), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2773-:d:175988
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2773/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Liu & Daryoush Habibi & Douglas Chai & Xiuming Wang & Hao Chen, 2019. "A Numerical Study of Axisymmetric Wave Propagation in Buried Fluid-Filled Pipes for Optimizing the Vibro-Acoustic Technique When Locating Gas Pipelines," Energies, MDPI, vol. 12(19), pages 1-17, September.
    2. Bingyuan Hong & Xiaoping Li & Yanbo Li & Yu Li & Yafeng Yu & Yumo Wang & Jing Gong & Dihui Ai, 2021. "Numerical Simulation of Elbow Erosion in Shale Gas Fields under Gas-Solid Two-Phase Flow," Energies, MDPI, vol. 14(13), pages 1-15, June.
    3. Bingcheng Li & Min Zeng & Qiuwang Wang, 2022. "Numerical Simulation of Erosion Wear for Continuous Elbows in Different Directions," Energies, MDPI, vol. 15(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2773-:d:175988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.