IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2678-d174256.html
   My bibliography  Save this article

Analysis of the Icing Accretion Performance of Conductors and Its Normalized Characterization Method of Icing Degree for Various Ice Types in Natural Environments

Author

Listed:
  • Caijin Fan

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Shapingba District, Chongqing 400044, China)

  • Xingliang Jiang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Shapingba District, Chongqing 400044, China)

Abstract

Icing degree in the severe icing regions for years is an important factor considered in the anti-icing design of transmission lines. However, there is currently no normalized characterization method for the icing degree of transmission lines, which can be used to record the severity of icing at icing areas over the years and guide the design of transmission lines. This study analyzes collision efficiency of water droplets with various diameters of conductors and investigates the ice accretion law of transmission lines with various diameters under four natural ice types. Therefore, the normalized method of standard ice thickness instead of various ice morphologies is creatively used to characterize icing degree of transmission lines and a lot of field tests which have been done at six natural ice observation stations have verified the effective of the method. The results have shown that: The diameters of conductor and the droplet significantly affect collision efficiency; the relation of standard ice thickness with diameter of conductors for four typical ice types complied with the law of power function. The results can provide important references for the design and external insulation selection of transmission lines in ice region.

Suggested Citation

  • Caijin Fan & Xingliang Jiang, 2018. "Analysis of the Icing Accretion Performance of Conductors and Its Normalized Characterization Method of Icing Degree for Various Ice Types in Natural Environments," Energies, MDPI, vol. 11(10), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2678-:d:174256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2678/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2678/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2678-:d:174256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.