IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1341-d110986.html
   My bibliography  Save this article

Wire Structure Heat Exchangers—New Designs for Efficient Heat Transfer

Author

Listed:
  • Hannes Fugmann

    (Fraunhofer ISE, Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110 Freiburg, Germany)

  • Eric Laurenz

    (Fraunhofer ISE, Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110 Freiburg, Germany)

  • Lena Schnabel

    (Fraunhofer ISE, Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110 Freiburg, Germany)

Abstract

Enhancing the heat transfer mechanism by increasing the heat exchanger surface area is a standard way to overcome low heat transfer on the gas side of heat exchangers. Different geometrical shapes, for example, plain, wavy, or interrupted fin geometries for plate-fin or tube-fin heat exchangers, are used for this task. Wire structures with dimensions in the submillimeter range are already used in regenerators for their heat capacity, but are rarely used in recuperators as heat transfer enhancers. New textile developments enable the fabrication of adapted structures with irregular grid sizes, and purpose-built for heat exchanger application. These wire structures allow for enlarging the heat transfer surface area, decreasing material utilization, and enabling flexibility of different geometrical dimensions. Possibilities for manufacturing and design selection are studied in the project, EffiMet, and thereafter at Fraunhofer ISE for the implementation of highly efficient heat exchanger geometries based on wire structures.

Suggested Citation

  • Hannes Fugmann & Eric Laurenz & Lena Schnabel, 2017. "Wire Structure Heat Exchangers—New Designs for Efficient Heat Transfer," Energies, MDPI, vol. 10(9), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1341-:d:110986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1341/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannes Fugmann & Paolo Di Lauro & Aniket Sawant & Lena Schnabel, 2018. "Development of Heat Transfer Surface Area Enhancements: A Test Facility for New Heat Exchanger Designs," Energies, MDPI, vol. 11(5), pages 1-17, May.
    2. Venegas, Tomas & Qu, Ming & Nawaz, Kashif & Wang, Lingshi, 2021. "Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Hannes Fugmann & Eric Laurenz & Lena Schnabel, 2019. "Multi-Dimensional Performance Evaluation of Heat Exchanger Surface Enhancements," Energies, MDPI, vol. 12(7), pages 1-22, April.
    4. Christian Walter & Sebastian Martens & Christian Zander & Carsten Mehring & Ulrich Nieken, 2020. "Heat Transfer through Wire Cloth Micro Heat Exchanger," Energies, MDPI, vol. 13(14), pages 1-20, July.
    5. Hannes Fugmann & Sebastian Martens & Richard Balzer & Martin Brenner & Lena Schnabel & Carsten Mehring, 2020. "Performance Evaluation of Wire Cloth Micro Heat Exchangers," Energies, MDPI, vol. 13(3), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1341-:d:110986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.