IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1334-d110819.html
   My bibliography  Save this article

Multi-Objective Optimization of the Hydrodynamic Performance of the Second Stage of a Multi-Phase Pump

Author

Listed:
  • Jun-Won Suh

    (Thermal & Fluid System R&D Group, Korea Institute of Industrial Technology, Cheonan 31056, Korea
    Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea)

  • Jin-Woo Kim

    (Thermal & Fluid System R&D Group, Korea Institute of Industrial Technology, Cheonan 31056, Korea
    Advanced Energy and Technology, University of Science and Technology, Daejeon 34141, Korea)

  • Young-Seok Choi

    (Thermal & Fluid System R&D Group, Korea Institute of Industrial Technology, Cheonan 31056, Korea
    Advanced Energy and Technology, University of Science and Technology, Daejeon 34141, Korea)

  • Jin-Hyuk Kim

    (Thermal & Fluid System R&D Group, Korea Institute of Industrial Technology, Cheonan 31056, Korea
    Advanced Energy and Technology, University of Science and Technology, Daejeon 34141, Korea)

  • Won-Gu Joo

    (Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea)

  • Kyoung-Yong Lee

    (Thermal & Fluid System R&D Group, Korea Institute of Industrial Technology, Cheonan 31056, Korea)

Abstract

Most multi-phase pumps used in crude oil production have been developed to satisfy certain pressure specifications. In the design of these pumps, the flow characteristics of the posterior stage are different from those of the prior stage. For this reason, the design of the second stage needs to be supplemented. To optimize performance in this stage, multi-objective optimization to simultaneously increase pressure and efficiency is reported in this article. Flow analyses of the single and multiple phases of the multi-phase pump were conducted by solving three-dimensional steady Reynolds-averaged Navier–Stokes equations. For the numerical optimization, two design variables related to the blade inlet angle were selected. The impeller and the diffuser blades were optimized using a systematic optimization technique combined with a central composite method and a hybrid multi-objective evolutionary algorithm coupled with a surrogate model. The selected optimal model yielded better hydrodynamic performance than the base model, and reasons for this are investigated through internal flow field analysis.

Suggested Citation

  • Jun-Won Suh & Jin-Woo Kim & Young-Seok Choi & Jin-Hyuk Kim & Won-Gu Joo & Kyoung-Yong Lee, 2017. "Multi-Objective Optimization of the Hydrodynamic Performance of the Second Stage of a Multi-Phase Pump," Energies, MDPI, vol. 10(9), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1334-:d:110819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1334/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1334/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Method of dynamic mode decomposition and reconstruction with application to a three-stage multiphase pump," Energy, Elsevier, vol. 208(C).
    2. Youn-Sung Kim & Man-Woong Heo & Hyeon-Seok Shim & Bong-Soo Lee & Dong-Hwan Kim & Kwang-Yong Kim, 2020. "Hydrodynamic Optimization for Design of a Submersible Axial-Flow Pump with a Swept Impeller," Energies, MDPI, vol. 13(12), pages 1-17, June.
    3. Wenwu Zhang & Zhiyi Yu & Muhammad Noaman Zahid & Yongjiang Li, 2018. "Study of the Gas Distribution in a Multiphase Rotodynamic Pump Based on Interphase Force Analysis," Energies, MDPI, vol. 11(5), pages 1-16, April.
    4. Fan Yang & Zhongbin Li & Yao Yuan & Chao Liu & Yiqi Zhang & Yan Jin, 2021. "Numerical and Experimental Investigation of Internal Flow Characteristics and Pressure Fluctuation in Inlet Passage of Axial Flow Pump under Deflection Flow Conditions," Energies, MDPI, vol. 14(17), pages 1-22, August.
    5. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    6. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Yang, Hong & Li, Helin & Liu, Xiaobing, 2020. "Effect of the inlet gas void fraction on the tip leakage vortex in a multiphase pump," Renewable Energy, Elsevier, vol. 150(C), pages 46-57.
    7. Ming Liu & Lei Tan & Shuliang Cao, 2018. "Design Method of Controllable Blade Angle and Orthogonal Optimization of Pressure Rise for a Multiphase Pump," Energies, MDPI, vol. 11(5), pages 1-20, April.
    8. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Influence of viscosity on energy performance and flow field of a multiphase pump," Renewable Energy, Elsevier, vol. 162(C), pages 1151-1160.
    9. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.
    10. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Wang, Zhengwei & Luo, Yongyao & Luo, Kun, 2020. "Energy conversion characteristics of multiphase pump impeller analyzed based on blade load spectra," Renewable Energy, Elsevier, vol. 157(C), pages 9-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1334-:d:110819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.