IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1158-d107231.html
   My bibliography  Save this article

A Full Frequency-Dependent Cable Model for the Calculation of Fast Transients

Author

Listed:
  • Abdullah Hoshmeh

    (Department of Electrical Engineering and Information Technology, Chemnitz University of Technology, 09126 Chemnitz, Germany)

  • Uwe Schmidt

    (Department of Electrical Engineering and Informatics, University of Applied Sciences Zittau/Goerlitz, 02763 Zittau, Germany)

Abstract

The calculation of frequency-dependent cable parameters is essential for simulations of transient phenomena in electrical power systems. The simulation of transients is more complicated than the calculation of currents and voltages in the nominal frequency range. The model has to represent the frequency dependency and the wave propagation behavior of cable lines. The introduced model combines an improved subconductor method for the determination of the frequency-dependent parameters and a PI section wave propagation model. The subconductor method considers the skin and proximity effect in all conductors for frequency ranges up to few megahertz. The subconductor method method yields accurate results. The wave propagation part of the cable model is based on a cascaded PI section model. A modal transformation technique has been used for the calculation in the time domain. The frequency-dependent elements of the related modal transformation matrices have been fitted with rational functions. The frequency dependence of cable parameters has been reproduced using a vector fitting algorithm and has been implemented into an resistor-inductor-capacitor network (RLC network) for each PI section. The proposed full model has been validated with measured data.

Suggested Citation

  • Abdullah Hoshmeh & Uwe Schmidt, 2017. "A Full Frequency-Dependent Cable Model for the Calculation of Fast Transients," Energies, MDPI, vol. 10(8), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1158-:d:107231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1158/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1158/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Lowczowski & Jozef Lorenc & Jerzy Andruszkiewicz & Zbigniew Nadolny & Jozef Zawodniak, 2019. "Novel Earth Fault Protection Algorithm Based on MV Cable Screen Zero Sequence Current Filter," Energies, MDPI, vol. 12(16), pages 1-20, August.
    2. Carlos Ruiz & Gonzalo Abad & Markel Zubiaga & Danel Madariaga & Joseba Arza, 2018. "Frequency-Dependent Pi Model of a Three-Core Submarine Cable for Time and Frequency Domain Analysis," Energies, MDPI, vol. 11(10), pages 1-21, October.
    3. Krzysztof Lowczowski & Zbigniew Nadolny & Bartosz Olejnik, 2019. "Analysis of Cable Screen Currents for Diagnostics Purposes," Energies, MDPI, vol. 12(7), pages 1-17, April.
    4. Bernhard Wunsch & Stanislav Skibin & Ville Forsström & Ivica Stevanovic, 2021. "EMC Component Modeling and System-Level Simulations of Power Converters: AC Motor Drives," Energies, MDPI, vol. 14(6), pages 1-22, March.
    5. Abdullah Hoshmeh & Uwe Schmidt & Akif Gürlek, 2018. "Investigations on the Developed Full Frequency- Dependent Cable Model for Calculations of Fast Transients," Energies, MDPI, vol. 11(9), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1158-:d:107231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.