IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p932-d103639.html
   My bibliography  Save this article

Harmonic Distortion Minimization in Power Grids with Wind and Electric Vehicles

Author

Listed:
  • Ritam Misra

    (Midcontinent Independent System Operator, Eagan, MN 55122, USA)

  • Sumit Paudyal

    (Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA)

  • Oğuzhan Ceylan

    (Department of Electrical and Electronics Engineering, Istanbul Kemerburgaz University, Istanbul 34000, Turkey)

  • Paras Mandal

    (Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, TX 79901, USA)

Abstract

Power-electronic interfacing based devices such as wind generators (WGs) and electrical vehicles (EVs) cause harmonic distortions on the power grid. Higher penetration and uncoordinated operation of WGs and EVs can lead to voltage and current harmonic distortions, which may exceed IEEE limits. It is interesting to note that WGs and EVs have some common harmonic profiles. Therefore, when EVs are connected to the grid, the harmonic pollution EVs impart onto the grid can be reduced to some extent by the amount of wind power injecting into the grid and vice versa. In this context, this work studies the impact of EVs on harmonic distortions and careful utilization of wind power to minimize the distortions in distribution feeders. For this, a harmonic unbalanced distribution feeder model is developed in OpenDSS and interfaced with Genetic Algorithm (GA) based optimization algorithm in MATLAB to solve optimal harmonic power flow (OHPF) problems. The developed OHPF model is first used to study impact of EV penetration on current/voltage total harmonic distortions (THDs) in distribution grids. Next, dispatch of WGs are found at different locations on the distribution grid to demonstrate reduction in the current/voltage THDs when EVs are charging.

Suggested Citation

  • Ritam Misra & Sumit Paudyal & Oğuzhan Ceylan & Paras Mandal, 2017. "Harmonic Distortion Minimization in Power Grids with Wind and Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:932-:d:103639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/932/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yih-Der Lee & Jheng-Lun Jiang & Yuan-Hsiang Ho & Wei-Chen Lin & Hsin-Ching Chih & Wei-Tzer Huang, 2020. "Neutral Current Reduction in Three-Phase Four-Wire Distribution Feeders by Optimal Phase Arrangement Based on a Full-Scale Net Load Model Derived from the FTU Data," Energies, MDPI, vol. 13(7), pages 1-20, April.
    2. Marco Faifer & Christian Laurano & Roberto Ottoboni & Sergio Toscani & Michele Zanoni, 2020. "Frequency-Domain Nonlinear Modeling Approaches for Power Systems Components—A Comparison," Energies, MDPI, vol. 13(10), pages 1-14, May.
    3. Bruno Eduardo Carmelito & José Maria de Carvalho Filho, 2023. "Hosting Capacity of Electric Vehicles on LV/MV Distribution Grids—A New Methodology Assessment," Energies, MDPI, vol. 16(3), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:932-:d:103639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.