IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p1058-d105498.html
   My bibliography  Save this article

A Novel Multi-Point Excitation Fatigue Testing Method for Wind Turbine Rotor Blades

Author

Listed:
  • Zujin Pan

    (School of Mechanical Engineering, Tongji University, Shanghai 200092, China)

  • Jianzhong Wu

    (School of Mechanical Engineering, Tongji University, Shanghai 200092, China)

Abstract

Wind turbine blades have to withstand the rigorous test of 20–25 years of service. Fatigue testing is an accurate method used to verify blade reliability. Multi-point excitation could better fit the fatigue damage distribution, which reduces the power output of a single exciter and saves testing energy consumption. The amplitude, phase, and frequency characteristics of the fatigue test system and, moreover, the relationship between the excitation force, damping, and the amplitude variation of the blade, are analyzed by the Lagrangian equation and the finite element simulation method. The full-scale fatigue test of an equivalent full cycle life in the flapwise direction is carried out by multi-excitation. When the frequency and phase of the multi-point exciters are consistent, the maximum vibration effect can be exerted. When the phase difference of the dual exciters is 180°, the vibration effect produced by the dual exciters can be equivalent to each other. The blade amplitude is proportional to excitation forces, while inversely proportional to the damping ratio. The bending moment deviation of the blade is controlled within 9.2%; moreover, the energy consumption is 40% lower than that of the single-point excitation. The use of multi-point excitation allows loading the blade with high precision, stable operation, and low cost, which provides the theoretical and experimental basis for the fatigue test of large wind turbine blades.

Suggested Citation

  • Zujin Pan & Jianzhong Wu, 2017. "A Novel Multi-Point Excitation Fatigue Testing Method for Wind Turbine Rotor Blades," Energies, MDPI, vol. 10(7), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1058-:d:105498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/1058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/1058/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Liang & Wu, Haijun & Wu, Jianzhong, 2021. "A case study for the optimization of moment-matching in wind turbine blade fatigue tests with a resonant type exciting approach," Renewable Energy, Elsevier, vol. 174(C), pages 769-785.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1058-:d:105498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.