IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p1045-d105361.html
   My bibliography  Save this article

Simulation of Contamination Deposition on Typical Shed Porcelain Insulators

Author

Listed:
  • Yukun Lv

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

  • Weiping Zhao

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

  • Jingang Li

    (Jinneng Clean Energy Ltd. Company, Taiyuan 030002, China)

  • Yazhao Zhang

    (School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

Abstract

The contamination deposition characteristics of insulators can be used in the development of antifouling work. Using COMSOL software, numerical simulations on the pollution-deposited performance of a porcelain three-umbrella insulator and porcelain bell jar insulator in a wind tunnel were conducted, and the simulated results were compared with the tested results. The comparison shows that the deposit amount is consistent with the order of magnitude and presents a similar tendency with Direct Current (DC) voltage variation; then the rationality of the simulation is verified. Based on these results, simulations of the natural contamination deposition on porcelain insulators and the distribution of pollution along the umbrella skirt were performed. The results indicates that, under a same wind speed, contamination of the porcelain three-umbrella insulator and porcelain bell jar insulator under DC voltage was positively correlated with the particle size. With the same particle size, the proportion of the deposit amount under DC voltage ( NSDD DC ) to the deposit amount under AC voltage ( NSDD AC ) of both insulators decreases with the increase in wind speed. However, the ratio increases as particle size increase. At a small wind speed, the deposit amount along the umbrella skirt of the two insulators displays a U-shaped distribution under DC voltage while there is little difference in the contamination amount of each skirt under Alternating Current (AC) voltage.

Suggested Citation

  • Yukun Lv & Weiping Zhao & Jingang Li & Yazhao Zhang, 2017. "Simulation of Contamination Deposition on Typical Shed Porcelain Insulators," Energies, MDPI, vol. 10(7), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1045-:d:105361
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/1045/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/1045/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiazheng Lu & Pengkang Xie & Zhenglong Jiang & Zhen Fang & Wei Wu, 2018. "Voltage Distribution and Flashover Performance of 220 kV Composite Insulators under Different Icing Conditions," Energies, MDPI, vol. 11(3), pages 1-13, March.
    2. Da Zhang & Fancui Meng, 2019. "Research on the Interrelation between Temperature Distribution and Dry Band on Wet Contaminated Insulators," Energies, MDPI, vol. 12(22), pages 1-14, November.
    3. Hongyue Yang & Ji Qian & Ming Yang & Chunxi Li & Hengfan Li & Songling Wang, 2020. "Study on the Effects of Microstructural Surfaces on the Attachment of Moving Microbes," Energies, MDPI, vol. 13(17), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1045-:d:105361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.