IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p655-d97993.html
   My bibliography  Save this article

Identification of Non-Stationary Magnetic Field Sources Using the Matching Pursuit Method

Author

Listed:
  • Beata Palczynska

    (Department of Marine Telecommunications, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland)

Abstract

The measurements of electromagnetic field emissions, performed on board a vessel have showed that, in this specific environment, a high level of non-stationary magnetic fields (MFs) is observed. The adaptive time-frequency method can be used successfully to analyze this type of measured signal. It allows one to specify the time interval in which the individual frequency components of the signal occur. In this paper, the method of identification of non-stationary MF sources based on the matching pursuit (MP) algorithm is presented. It consists of the decomposition of an examined time-waveform into the linear expansion of chirplet atoms and the analysis of the matrix of their parameters. The main feature of the proposed method is the modification of the chirplet’s matrix in a way that atoms, whose normalized energies are lower than a certain threshold, will be rejected. On the time-frequency planes of the spectrograms, obtained separately for each remaining chirlpet, it can clearly identify the time-frequency structures appearing in the examined signal. The choice of a threshold defines the computing speed and precision of the performed analysis. The method was implemented in the virtual application and used for processing real data, obtained from measurements of time-vary MF emissions onboard a ship.

Suggested Citation

  • Beata Palczynska, 2017. "Identification of Non-Stationary Magnetic Field Sources Using the Matching Pursuit Method," Energies, MDPI, vol. 10(5), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:655-:d:97993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qing Yang & Jing Wang & Wenxia Sima & Lin Chen & Tao Yuan, 2011. "Mixed Over-Voltage Decomposition Using Atomic Decompositions Based on a Damped Sinusoids Atom Dictionary," Energies, MDPI, vol. 4(9), pages 1-18, September.
    2. Yan Zhao & Zhimin Li & Yonghui Nie, 2016. "A Time-Frequency Analysis Method for Low Frequency Oscillation Signals Using Resonance-Based Sparse Signal Decomposition and a Frequency Slice Wavelet Transform," Energies, MDPI, vol. 9(3), pages 1-18, March.
    3. Nabeel A. Khan & Faisal Baig & Syed Junaid Nawaz & Naveed Ur Rehman & Shree K. Sharma, 2016. "Analysis of Power Quality Signals Using an Adaptive Time-Frequency Distribution," Energies, MDPI, vol. 9(11), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuang Feng & Jianing Chen & Yi Tang, 2019. "Identification of Low Frequency Oscillations Based on Multidimensional Features and ReliefF-mRMR," Energies, MDPI, vol. 12(14), pages 1-18, July.
    2. Sapnken, Flavian Emmanuel & Hong, Kwon Ryong & Chopkap Noume, Hermann & Tamba, Jean Gaston, 2024. "A grey prediction model optimized by meta-heuristic algorithms and its application in forecasting carbon emissions from road fuel combustion," Energy, Elsevier, vol. 302(C).
    3. Kaihua Jiang & Lin Du & Huan Chen & Feng Yang & Yubo Wang, 2019. "Non-Contact Measurement and Polarity Discrimination-Based Identification Method for Direct Lightning Strokes," Energies, MDPI, vol. 12(2), pages 1-17, January.
    4. Francesco Bonavolontà & Luigi Pio Di Noia & Davide Lauria & Annalisa Liccardo & Salvatore Tessitore, 2019. "An Optimized HT-Based Method for the Analysis of Inter-Area Oscillations on Electrical Systems," Energies, MDPI, vol. 12(15), pages 1-22, July.
    5. Karol Nowak & Jerzy Janiszewski & Grzegorz Dombek, 2019. "Thyristor Arc Eliminator for Protection of Low Voltage Electrical Equipment," Energies, MDPI, vol. 12(14), pages 1-15, July.
    6. Kwan-Shik Shim & Seon-Ju Ahn & Sang-Yun Yun & Joon-Ho Choi, 2017. "Analysis of Low Frequency Oscillation Using the Multi-Interval Parameter Estimation Method on a Rolling Blackout in the KEPCO System," Energies, MDPI, vol. 10(4), pages 1-18, April.
    7. Ying-Yi Hong, 2016. "Electric Power Systems Research," Energies, MDPI, vol. 9(10), pages 1-4, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:655-:d:97993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.