IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p521-d95598.html
   My bibliography  Save this article

EMTP Model of a Bidirectional Cascaded Multilevel Solid State Transformer for Distribution System Studies

Author

Listed:
  • Jacinto Martin-Arnedo

    (Estabanell Energia, 08401 Granollers, Spain)

  • Francisco González-Molina

    (Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, 43007 Tarragona, Spain)

  • Juan A. Martinez-Velasco

    (Departament d’Enginyeria Elèctrica, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain)

  • Mohammad Ebrahim Adabi

    (Departament d’Enginyeria Elèctrica, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain)

Abstract

: This paper presents a time-domain model of a MV/LV bidirectional solid state transformer (SST). A multilevel converter configuration of the SST MV side is obtained by cascading a single-phase cell made of the series connection of an H bridge and a dual active bridge (dc-dc converter); the aim is to configure a realistic SST design suitable for MV levels. A three-phase four-wire converter has been used for the LV side, allowing the connection of both load/generation. The SST model, including the corresponding controllers, has been built and encapsulated as a custom-made model in the ATP version of the EMTP for application in distribution system studies. Several case studies have been carried out in order to evaluate the behavior of the proposed SST design under different operating conditions and check its impact on power quality.

Suggested Citation

  • Jacinto Martin-Arnedo & Francisco González-Molina & Juan A. Martinez-Velasco & Mohammad Ebrahim Adabi, 2017. "EMTP Model of a Bidirectional Cascaded Multilevel Solid State Transformer for Distribution System Studies," Energies, MDPI, vol. 10(4), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:521-:d:95598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/521/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengwei Luo & Derong Luo & Shoudao Huang & Gongping Wu & Hongzhang Zhu & Qianjun He, 2018. "A Novel Control Strategy for DC-Link Voltage Balance and Reactive Power Equilibrium of a Single-Phase Cascaded H-Bridge Rectifier," Energies, MDPI, vol. 12(1), pages 1-20, December.
    2. Welbert A. Rodrigues & Thiago R. Oliveira & Lenin M. F. Morais & Arthur H. R. Rosa, 2018. "Voltage and Power Balance Strategy without Communication for a Modular Solid State Transformer Based on Adaptive Droop Control," Energies, MDPI, vol. 11(7), pages 1-20, July.
    3. Fei Xiong & Junyong Wu & Liangliang Hao & Zicheng Liu, 2017. "Backflow Power Optimization Control for Dual Active Bridge DC-DC Converters," Energies, MDPI, vol. 10(9), pages 1-27, September.
    4. Hun-Chul Seo, 2017. "New Adaptive Reclosing Technique in Unbalanced Distribution System," Energies, MDPI, vol. 10(7), pages 1-16, July.
    5. Mohammed Radi & Mohamed Darwish & Gareth Taylor & Ioana Pisica, 2021. "Control Configurations for Reactive Power Compensation at the Secondary Side of the Low Voltage Substation by Using Hybrid Transformer," Energies, MDPI, vol. 14(3), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:521-:d:95598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.