IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p359-d93019.html
   My bibliography  Save this article

Near Wellbore Hydraulic Fracture Propagation from Perforations in Tight Rocks: The Roles of Fracturing Fluid Viscosity and Injection Rate

Author

Listed:
  • Seyed Hassan Fallahzadeh

    (Petroleum Engineering Department, Curtin University, Perth, WA 6151, Australia)

  • Md Mofazzal Hossain

    (Petroleum Engineering Department, Curtin University, Perth, WA 6151, Australia)

  • Ashton James Cornwell

    (Petroleum Engineering Department, Curtin University, Perth, WA 6151, Australia)

  • Vamegh Rasouli

    (Petroleum Engineering Department, University of North Dakota, Grand Forks, ND 58202-6116, USA)

Abstract

Hydraulic fracture initiation and near wellbore propagation is governed by complex failure mechanisms, especially in cased perforated wellbores. Various parameters affect such mechanisms, including fracturing fluid viscosity and injection rate. In this study, three different fracturing fluids with viscosities ranging from 20 to 600 Pa.s were used to investigate the effects of varying fracturing fluid viscosities and fluid injection rates on the fracturing mechanisms. Hydraulic fracturing tests were conducted in cased perforated boreholes made in tight 150 mm synthetic cubic samples. A true tri-axial stress cell was used to simulate real far field stress conditions. In addition, dimensional analyses were performed to correspond the results of lab experiments to field-scale operations. The results indicated that by increasing the fracturing fluid viscosity and injection rate, the fracturing energy increased, and consequently, higher fracturing pressures were observed. However, when the fracturing energy was transferred to a borehole at a faster rate, the fracture initiation angle also increased. This resulted in more curved fracture planes. Accordingly, a new parameter, called fracturing power, was introduced to relate fracture geometry to fluid viscosity and injection rate. Furthermore, it was observed that the presence of casing in the wellbore impacted the stress distribution around the casing in such a way that the fracture propagation deviated from the wellbore vicinity.

Suggested Citation

  • Seyed Hassan Fallahzadeh & Md Mofazzal Hossain & Ashton James Cornwell & Vamegh Rasouli, 2017. "Near Wellbore Hydraulic Fracture Propagation from Perforations in Tight Rocks: The Roles of Fracturing Fluid Viscosity and Injection Rate," Energies, MDPI, vol. 10(3), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:359-:d:93019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/359/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Can Cai & Xiaochuan Wang & Shaohua Mao & Yong Kang & Yiyuan Lu & Xiangdong Han & Wenchuan Liu, 2017. "Heat Transfer Characteristics and Prediction Model of Supercritical Carbon Dioxide (SC-CO 2 ) in a Vertical Tube," Energies, MDPI, vol. 10(11), pages 1-21, November.
    2. Yuxiang Cheng & Yanjun Zhang, 2020. "Experimental Study of Fracture Propagation: The Application in Energy Mining," Energies, MDPI, vol. 13(6), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:359-:d:93019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.