IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p299-d92055.html
   My bibliography  Save this article

Optimum Design and Operation of an HVAC Cooling Tower for Energy and Water Conservation

Author

Listed:
  • Clemente García Cutillas

    (Departamento de Ingeniería Mecánica y Energía, Universidad Miguel Hernández, Avda. de la Universidad, s/n, 03202 Elche, Spain)

  • Javier Ruiz Ramírez

    (Departamento de Ingeniería Mecánica y Energía, Universidad Miguel Hernández, Avda. de la Universidad, s/n, 03202 Elche, Spain)

  • Manuel Lucas Miralles

    (Departamento de Ingeniería Mecánica y Energía, Universidad Miguel Hernández, Avda. de la Universidad, s/n, 03202 Elche, Spain)

Abstract

The energy consumption increase in the last few years has contributed to developing energy efficiency policies in many countries, the main goal of which is decreasing CO 2 emissions. One of the reasons for this increment has been caused by the use of air conditioning systems due to new comfort standards. In that regard, cooling towers and evaporative condensers are presented as efficient devices that operate with low-level water temperature. Moreover, the energy consumption and the cost of the equipment are lower than other systems like air condensers at the same operation conditions. This work models an air conditioning system in TRNSYS software, the main elements if which are a cooling tower, a water-water chiller and a reference building. The cooling tower model is validated using experimental data in a pilot plant. The main objective is to implement an optimizing control strategy in order to reduce both energy and water consumption. Furthermore a comparison between three typical methods of capacity control is carried out. Additionally, different cooling tower configurations are assessed, involving six drift eliminators and two water distribution systems. Results show the influence of optimizing the control strategy and cooling tower configuration, with a maximum energy savings of 10.8% per story and a reduction of 4.8% in water consumption.

Suggested Citation

  • Clemente García Cutillas & Javier Ruiz Ramírez & Manuel Lucas Miralles, 2017. "Optimum Design and Operation of an HVAC Cooling Tower for Energy and Water Conservation," Energies, MDPI, vol. 10(3), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:299-:d:92055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Chun-Cheng & Shieh, Shyan-Shu & Jang, Shi-Shang & Wu, Chan-Wei & Tsou, Ying, 2015. "Energy conservation improvement and ON–OFF switch times reduction for an existing VFD-fan-based cooling tower," Applied Energy, Elsevier, vol. 154(C), pages 491-499.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zbigniew Buryn & Anna Kuczuk & Janusz Pospolita & Rafał Smejda & Katarzyna Widera, 2021. "Impact of Weather Conditions on the Operation of Power Unit Cooling Towers 905 MWe," Energies, MDPI, vol. 14(19), pages 1-19, October.
    2. Altaf Hussain Rajpar & Imran Ali & Ahmad E. Eladwi & Mohamed Bashir Ali Bashir, 2021. "Recent Development in the Design of Wind Deflectors for Vertical Axis Wind Turbine: A Review," Energies, MDPI, vol. 14(16), pages 1-23, August.
    3. Whei-Min Lin & Chung-Yuen Yang & Ming-Tang Tsai & Hong-Jey Gow, 2019. "The Optimized Energy Saving of a Refrigerating Chamber," Energies, MDPI, vol. 12(10), pages 1-16, May.
    4. Toru Yamamoto & Hirofumi Hayama & Takao Hayashi, 2020. "Formulation of Coefficient of Performance Characteristics of Water-cooled Chillers and Evaluation of Composite COP for Combined Chillers," Energies, MDPI, vol. 13(5), pages 1-20, March.
    5. Janusz Pospolita & Anna Kuczuk & Katarzyna Widera & Zbigniew Buryn & Robert Cholewa & Andrzej Drajczyk & Mirosław Pietrucha & Rafał Smejda, 2022. "Water Losses in the Condenser Cooling System at the 905 MWe Power Unit," Energies, MDPI, vol. 15(16), pages 1-25, August.
    6. Barth, Florian & Schüppler, Simon & Menberg, Kathrin & Blum, Philipp, 2023. "Estimating cooling capacities from aerial images using convolutional neural networks," Applied Energy, Elsevier, vol. 349(C).
    7. Awais Shah & Deqing Huang & Tianpeng Huang & Umar Farid, 2018. "Optimization of BuildingsEnergy Consumption by Designing Sliding Mode Control for Multizone VAV Air Conditioning Systems," Energies, MDPI, vol. 11(11), pages 1-18, October.
    8. Awais Shah & Deqing Huang & Yixing Chen & Xin Kang & Na Qin, 2017. "Robust Sliding Mode Control of Air Handling Unit for Energy Efficiency Enhancement," Energies, MDPI, vol. 10(11), pages 1-21, November.
    9. Wei Yuan & Fengzhong Sun & Ruqing Liu & Xuehong Chen & Ying Li, 2020. "The Effect of Air Parameters on the Evaporation Loss in a Natural Draft Counter-Flow Wet Cooling Tower," Energies, MDPI, vol. 13(23), pages 1-16, November.
    10. Swapnil S. Shinde & Nitin P. Gulhane & Jan Taler & Paweł Ocłoń & Dawid Taler & Roberto de Lieto Vollaro, 2023. "Analysis of the Effect of Packing Materials (Fills) and Flow Rate on the Range and Efficiency of a Forced Draft Evaporative Cooling Tower," Energies, MDPI, vol. 16(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju-wan Ha & Yu-jin Kim & Kyung-soon Park & Young-hak Song, 2022. "Energy Saving Evaluation with Low Liquid to Gas Ratio Operation in HVAC&R System," Energies, MDPI, vol. 15(19), pages 1-29, October.
    2. Li, Xiaoxiao & Gurgenci, Hal & Guan, Zhiqiang & Wang, Xurong & Duniam, Sam, 2017. "Measurements of crosswind influence on a natural draft dry cooling tower for a solar thermal power plant," Applied Energy, Elsevier, vol. 206(C), pages 1169-1183.
    3. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    4. Olszewski, Pawel, 2022. "Experimental analysis of ON/OFF and variable speed drive controlled industrial chiller towards energy efficient operation," Applied Energy, Elsevier, vol. 309(C).
    5. Junqi Wang & Rundong Liu & Linfeng Zhang & Hussain Syed ASAD & Erlin Meng, 2019. "Triggering Optimal Control of Air Conditioning Systems by Event-Driven Mechanism: Comparing Direct and Indirect Approaches," Energies, MDPI, vol. 12(20), pages 1-20, October.
    6. Ma, Keyan & Liu, Mingsheng & Zhang, Jili, 2021. "Online optimization method of cooling water system based on the heat transfer model for cooling tower," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:299-:d:92055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.