IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2173-d123509.html
   My bibliography  Save this article

Investigation of the Magnetic Circuit and Performance of Less-Rare-Earth Interior Permanent-Magnet Synchronous Machines Used for Electric Vehicles

Author

Listed:
  • Ping Zheng

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China
    State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China)

  • Weinan Wang

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China)

  • Mingqiao Wang

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China)

  • Yong Liu

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China)

  • Zhenxing Fu

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China)

Abstract

The less-rare-earth interior permanent-magnet synchronous machines (LRE-IPMSMs), which have the advantages of high power density, high efficiency, and low cost, are promising candidates for electric vehicles (EVs). In this paper, the equivalent magnetic circuit (EMC) of LRE-IPMSM is established and analyzed to investigate the machine design principles, and then the performance of an optimized machine is analyzed. Firstly, the equivalent magnetic circuits of the LRE-IPMSM are established by taking the saturation effect into consideration. Secondly, the effects of geometric parameters, such as the permanent-magnet (PM) width, the PM thickness, the flux barrier thickness, the flux barrier span angle, and the bridge width, on no-load flux, q -axis flux, and d -axis flux are investigated, respectively. The results calculated by the EMC method and finite-element analysis (FEA) are analyzed and compared, which proves the effectiveness of the EMC method. Finally, an optimized design of LRE-IPMSM obtained by the magnetic circuit analyses is proposed. The electromagnetic performances and mechanical strength of the optimized LRE-IPMSM are analyzed and verified, respectively.

Suggested Citation

  • Ping Zheng & Weinan Wang & Mingqiao Wang & Yong Liu & Zhenxing Fu, 2017. "Investigation of the Magnetic Circuit and Performance of Less-Rare-Earth Interior Permanent-Magnet Synchronous Machines Used for Electric Vehicles," Energies, MDPI, vol. 10(12), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2173-:d:123509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2173/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2173/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoyu Chu & Rukmi Dutta & Alireza Pouramin & Muhammed Fazlur Rahman, 2020. "Analysis of Torque Ripple of a Spoke-Type Interior Permanent Magnet Machine," Energies, MDPI, vol. 13(11), pages 1-16, June.
    2. Damian Caballero & Borja Prieto & Gurutz Artetxe & Ibon Elosegui & Miguel Martinez-Iturralde, 2018. "Node Mapping Criterion for Highly Saturated Interior PMSMs Using Magnetic Reluctance Network," Energies, MDPI, vol. 11(9), pages 1-19, August.
    3. Anna Przybył & Piotr Gębara & Roman Gozdur & Krzysztof Chwastek, 2022. "Modeling of Magnetic Properties of Rare-Earth Hard Magnets," Energies, MDPI, vol. 15(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2173-:d:123509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.