IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2148-d123049.html
   My bibliography  Save this article

Estimation of Conservation Voltage Reduction Factors Using Measurement Data of KEPCO System

Author

Listed:
  • Kwan-Shik Shim

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Seok-Il Go

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Sang-Yun Yun

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Joon-Ho Choi

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Won Nam-Koong

    (Energy System Group Energy New Business Laboratory, Korea Electric Power Research Institute, Daejeon 34056, Korea)

  • Chang-Hoon Shin

    (Energy System Group Energy New Business Laboratory, Korea Electric Power Research Institute, Daejeon 34056, Korea)

  • Seon-Ju Ahn

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

Abstract

This paper describes a method to estimate conservation voltage reduction (CVR) factors using data measured in power distribution systems. A direct method is proposed to estimate CVR factors using only data measured at the moment of the transformer tap change. The mean absolute deviation (MAD) direct method is proposed to consider direct methods and load variations. The proposed methods do not necessitate intentional tap changes for testing purposes. Instead, the voltage and load changes that occur when the tap changes, for voltage regulation purposes, are measured and utilized in the CVR factor calculation. The proposed methods were tested using data obtained from the Korea Electric Power Corporation (KEPCO) system, and the results revealed that CVR factors for both active power and reactive power could be estimated using data measured in power distribution systems. Results of the CVR factor estimation for the active power revealed that the highest CVR factors occurred in winter, during which a large quantity of heating loads exist. In addition, the estimated CVR factors for the reactive power were higher than the estimated CVR factors for the active power because reactive power is more sensitive to voltage changes.

Suggested Citation

  • Kwan-Shik Shim & Seok-Il Go & Sang-Yun Yun & Joon-Ho Choi & Won Nam-Koong & Chang-Hoon Shin & Seon-Ju Ahn, 2017. "Estimation of Conservation Voltage Reduction Factors Using Measurement Data of KEPCO System," Energies, MDPI, vol. 10(12), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2148-:d:123049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soon-Ryul Nam & Sang-Hee Kang & Joo-Ho Lee & Seon-Ju Ahn & Joon-Ho Choi, 2013. "Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data," Energies, MDPI, vol. 6(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Gorjian & Mohsen Eskandari & Mohammad H. Moradi, 2023. "Conservation Voltage Reduction in Modern Power Systems: Applications, Implementation, Quantification, and AI-Assisted Techniques," Energies, MDPI, vol. 16(5), pages 1-36, March.
    2. Anthony Igiligi & Armin Vielhauer & Mathias Ehrenwirth & Christian Hurm & Thorsten Summ & Christoph Trinkl & Daniel Navarro Gevers, 2023. "Assessment of Conservation Voltage Reduction in Distribution Networks with Voltage Regulating Distribution Transformers," Energies, MDPI, vol. 16(7), pages 1-14, March.
    3. Mithila Seva Bala Sundaram & ChiaKwang Tan & Jeyraj Selvaraj & Ab. Halim Abu Bakar, 2023. "Energy Savings for Various Residential Appliances and Distribution Networks in a Malaysian Scenario," Energies, MDPI, vol. 16(13), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. GM Shafiullah & Bond Watson & Christopher Lund & Md Moktadir Rahman & Gloria Rupf & Jonathan Whale, 2017. "Voltage Optimisation Technology for an Australian Abattoir—A Techno-Economic Evaluation," Energies, MDPI, vol. 10(11), pages 1-26, November.
    2. Anthony Igiligi & Armin Vielhauer & Mathias Ehrenwirth & Christian Hurm & Thorsten Summ & Christoph Trinkl & Daniel Navarro Gevers, 2023. "Assessment of Conservation Voltage Reduction in Distribution Networks with Voltage Regulating Distribution Transformers," Energies, MDPI, vol. 16(7), pages 1-14, March.
    3. Kyungsung An & Hao Jan Liu & Hao Zhu & Zhao Yang Dong & Kyeon Hur, 2016. "Evaluation of Conservation Voltage Reduction with Analytic Hierarchy Process: A Decision Support Framework in Grid Operations Planning," Energies, MDPI, vol. 9(12), pages 1-15, December.
    4. Pyeong-Ik Hwang & Seung-Il Moon & Seon-Ju Ahn, 2016. "A Conservation Voltage Reduction Scheme for a Distribution Systems with Intermittent Distributed Generators," Energies, MDPI, vol. 9(9), pages 1-18, August.
    5. Matthew Rowe & Timur Yunusov & Stephen Haben & William Holderbaum & Ben Potter, 2014. "The Real-Time Optimisation of DNO Owned Storage Devices on the LV Network for Peak Reduction," Energies, MDPI, vol. 7(6), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2148-:d:123049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.