IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2042-d121402.html
   My bibliography  Save this article

New Performance Indices for Voltage Stability Analysis in a Power System

Author

Listed:
  • Isaiah Adebayo

    (Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa
    Department of Electronic and Electrical Engineering, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso 210271, Oyo State, Nigeria)

  • Yanxia Sun

    (Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa)

Abstract

The frequent occurrence of voltage instability in a modern power system is alarming and thus, has been of great concern to power system utilities. In this paper, a new performance index based on the power flow solutions for voltage stability assessment of a power system is presented. First, the voltage deviation with respect to reactive power load variation at each load bus is found. Thereafter, the performance voltage bus index for each load bus is computed. An improved modal analysis technique (IMAT) is used to identify weak nodes that are liable to voltage instability in a power system. This technique uses a submatrix of the full Jacobian matrix for voltage stability analysis. Comparison of the proposed method is done with existing voltage stability indices and the conventional modal analysis technique (CMAT). The effectiveness of all the approaches presented are tested on both Western system coordinating Council (WSCC) 9-bus, IEEE 30 bus and IEEE 57 bus test systems. Results obtained show that the proposed techniques can serve as an alternative tool to other conventional techniques for voltage stability assessment in a power system and can be of tremendous benefits in the planning and operation of a power system by system operators.

Suggested Citation

  • Isaiah Adebayo & Yanxia Sun, 2017. "New Performance Indices for Voltage Stability Analysis in a Power System," Energies, MDPI, vol. 10(12), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2042-:d:121402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2042/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2042/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Van Duong Ngo & Dinh Duong Le & Kim Hung Le & Van Kien Pham & Alberto Berizzi, 2017. "A Methodology for Determining Permissible Operating Region of Power Systems According to Conditions of Static Stability Limit," Energies, MDPI, vol. 10(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Danilo Montoya & Walter Gil-González & Andrés Arias-Londoño & Arul Rajagopalan & Jesus C. Hernández, 2020. "Voltage Stability Analysis in Medium-Voltage Distribution Networks Using a Second-Order Cone Approximation," Energies, MDPI, vol. 13(21), pages 1-15, November.
    2. Yunqi Xiao & Yi Wang & Yanping Sun, 2018. "Reactive Power Optimal Control of a Wind Farm for Minimizing Collector System Losses," Energies, MDPI, vol. 11(11), pages 1-15, November.
    3. Abdullahi Oboh Muhammed & Muhyaddin Rawa, 2020. "A Systematic PVQV-Curves Approach for Investigating the Impact of Solar Photovoltaic-Generator in Power System Using PowerWorld Simulator," Energies, MDPI, vol. 13(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullahi Oboh Muhammed & Muhyaddin Rawa, 2020. "A Systematic PVQV-Curves Approach for Investigating the Impact of Solar Photovoltaic-Generator in Power System Using PowerWorld Simulator," Energies, MDPI, vol. 13(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2042-:d:121402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.