IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1673-d116021.html
   My bibliography  Save this article

Performance Assessment of Black Box Capacity Forecasting for Multi-Market Trade Application

Author

Listed:
  • Pamela MacDougall

    (Monitoring and Control Services, TNO, 9701 BK Groningen, The Netherlands
    Department of Electrical Engineering, University of Leuven, 3001 Leuven, Belgium)

  • Bob Ran

    (Monitoring and Control Services, TNO, 9701 BK Groningen, The Netherlands)

  • George B. Huitema

    (Monitoring and Control Services, TNO, 9701 BK Groningen, The Netherlands
    Faculty of Economics and Business, University of Groningen, 9700 AV Groningen, The Netherlands)

  • Geert Deconinck

    (Department of Electrical Engineering, University of Leuven, 3001 Leuven, Belgium)

Abstract

With the growth of renewable generated electricity in the energy mix, large energy storage and flexible demand, particularly aggregated demand response is becoming a front runner as a new participant in the wholesale energy markets. One of the biggest barriers for the integration of aggregator services into market participation is knowledge of the current and future flexible capacity. To calculate the available flexibility, the current aggregator pilot and simulation implementations use lower level measurements and device specifications. This type of implementation is not scalable due to computational constraints, as well as it could conflict with end user privacy rights. Black box machine learning approaches have been proven to accurately estimate the available capacity of a cluster of heating devices using only aggregated data. This study will investigate the accuracy of this approach when applied to a heterogeneous virtual power plant (VPP). Firstly, a sensitivity analysis of the machine learning model is performed when varying the underlying device makeup of the VPP. Further, the forecasted flexible capacity of a heterogeneous residential VPP was applied to a trade strategy, which maintains a day ahead schedule, as well as offers flexibility to the imbalance market. This performance is then compared when using the same strategy with no capacity forecasting, as well as perfect knowledge. It was shown that at most, the highest average error, regardless of the VPP makeup, was still less than 9%. Further, when applying the forecasted capacity to a trading strategy, 89% of the optimal performance can be met. This resulted in a reduction of monthly costs by approximately 20%.

Suggested Citation

  • Pamela MacDougall & Bob Ran & George B. Huitema & Geert Deconinck, 2017. "Performance Assessment of Black Box Capacity Forecasting for Multi-Market Trade Application," Energies, MDPI, vol. 10(10), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1673-:d:116021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1673/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. O'Connell, Sarah & Reynders, Glenn & Keane, Marcus M., 2021. "Impact of source variability on flexibility for demand response," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1673-:d:116021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.