IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1548-d114339.html
   My bibliography  Save this article

Optimal Cold-Start Control of a Gasoline Engine

Author

Listed:
  • Raffael Hedinger

    (Institute for Dynamic Systems and Control, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland)

  • Philipp Elbert

    (Institute for Dynamic Systems and Control, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland)

  • Christopher Onder

    (Institute for Dynamic Systems and Control, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland)

Abstract

This article analyzes the influence of the ignition retardation on the fuel consumption, the cumulative tailpipe hydrocarbon emissions, and the temperature inside the three-way catalytic converter in a gasoline direct injection engine operated under idling conditions. A dedicated cylinder-individual, model-based, multivariable controller was used in experiments in order to isolate the effect of the ignition retardation on the hydrocarbon emissions as much as possible. An optimal control problem for a gasoline engine at a cold-start is formulated, which is used to interpret the experimental data obtained. The corresponding goal is to minimize the fuel consumption during an initial idling phase of a fixed duration while guaranteeing that the three-way catalytic converter reaches a sufficiently high final temperature and at the same time making sure that the cumulative hydrocarbon emissions stay below a given limit. The experimental data indicates that the engine should be operated with maximum ignition retardation in order to reach any temperature inside the three-way catalytic converter as quickly as possible concurrently with minimum tailpipe emissions and with the minimum possible fuel consumption.

Suggested Citation

  • Raffael Hedinger & Philipp Elbert & Christopher Onder, 2017. "Optimal Cold-Start Control of a Gasoline Engine," Energies, MDPI, vol. 10(10), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1548-:d:114339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1548/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1548/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tammo Zobel & Christian Schürch & Konstantinos Boulouchos & Christopher Onder, 2020. "Reduction of Cold-Start Emissions for a Micro Combined Heat and Power Plant," Energies, MDPI, vol. 13(8), pages 1-18, April.
    2. Guille des Buttes, Alice & Jeanneret, Bruno & Kéromnès, Alan & Le Moyne, Luis & Pélissier, Serge, 2020. "Energy management strategy to reduce pollutant emissions during the catalyst light-off of parallel hybrid vehicles," Applied Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1548-:d:114339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.