IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1462-d112851.html
   My bibliography  Save this article

A High-Frequency Isolation (HFI) Charging DC Port Combining a Front-End Three-Level Converter with a Back-End LLC Resonant Converter

Author

Listed:
  • Guowei Cai

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Duolun Liu

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Chuang Liu

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Wei Li

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Jiajun Sun

    (School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China)

Abstract

The high-frequency isolation (HFI) charging DC port can serve as the interface between unipolar/bipolar DC buses and electric vehicles (EVs) through the two-power-stage system structure that combines the front-end three-level converter with the back-end logical link control (LLC) resonant converter. The DC output voltage can be maintained within the desired voltage range by the front-end converter. The electrical isolation can be realized by the back-end LLC converter, which has the bus converter function. According to the three-level topology, the low-voltage rating power devices can be adapted for half-voltage stress of the total DC grid, and the PWM phase-shift control can double the equivalent switching frequency to greatly reduce the filter volume. LLC resonant converters have advance characteristics of inverter-side zero-voltage-switching (ZVS) and rectifier-side zero-current switching (ZCS). In particular, it can achieve better performance under quasi-resonant frequency mode. Additionally, the magnetizing current can be modified following different DC output voltages, which have the self-adaptation ZVS condition for decreasing the circulating current. Here, the principles of the proposed topology are analyzed in detail, and the design conditions of the three-level output filter and high-frequency isolation transformer are explored. Finally, a 20 kW prototype with the 760 V input and 200–500 V output are designed and tested. The experimental results are demonstrated to verify the validity and performance of this charging DC port system structure.

Suggested Citation

  • Guowei Cai & Duolun Liu & Chuang Liu & Wei Li & Jiajun Sun, 2017. "A High-Frequency Isolation (HFI) Charging DC Port Combining a Front-End Three-Level Converter with a Back-End LLC Resonant Converter," Energies, MDPI, vol. 10(10), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1462-:d:112851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1462/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto M. Pernía & Juan Díaz-González & Miguel J. Prieto & José A. Fernández-Rubiera & Manés Fernández-Cabanas & Fernando Nuño-García, 2018. "Li-Po Battery Charger Based on the Constant Current/Voltage Parallel Resonant Converter Operating in ZVS," Energies, MDPI, vol. 11(4), pages 1-12, April.
    2. Hussain Humaira & Seung-Woo Baek & Hag-Wone Kim & Kwan-Yuhl Cho, 2019. "Circuit Topology and Small Signal Modeling of Variable Duty Cycle Controlled Three-Level LLC Converter," Energies, MDPI, vol. 12(20), pages 1-21, October.
    3. Shu-huai Zhang & Yi-feng Wang & Bo Chen & Fu-qiang Han & Qing-cui Wang, 2018. "Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy," Energies, MDPI, vol. 11(1), pages 1-22, January.
    4. Chun-Yu Liu & Yi-Hua Liu & Shun-Chung Wang & Zong-Zhen Yang & Song-Pei Ye, 2021. "An Adaptive Synchronous Rectification Driving Strategy for Bidirectional Full-Bridge LLC Resonant Converter," Energies, MDPI, vol. 14(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1462-:d:112851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.