Author
Listed:
- Thomas M. Fullerton
(Department of Economics and Finance, The University of Texas at El Paso, El Paso, TX 79968, USA)
- Michael Pokojovy
(Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, USA)
- Andrews T. Anum
(Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA)
- Ebenezer Nkum
(Cigna Healthcare, Nashville, TN 37228, USA)
Abstract
The multivariate Vasicek model is commonly used to capture mean-reverting dynamics typical for short rates, asset price stochastic log-volatilities, etc. Reparametrizing the discretized problem as a VAR(1) model, the parameters are oftentimes estimated using the multivariate least squares (MLS) method, which can be susceptible to outliers. To account for potential model violations, a maximum trimmed likelihood estimation (MTLE) approach is utilized to derive a system of nonlinear estimating equations, and an iterative procedure is developed to solve the latter. In addition to robustness, our new technique allows for reliable recovery of the long-term mean, unlike existing methodologies. A set of simulation studies across multiple dimensions, sample sizes and robustness configurations are performed. MTLE outcomes are compared to those of multivariate least trimmed squares (MLTS), MLE and MLS. Empirical results suggest that MTLE not only maintains good relative efficiency for uncontaminated data but significantly improves overall estimation quality in the presence of data irregularities. Additionally, real data examples containing daily log-volatilities of six common assets (commodities and currencies) and US/Euro short rates are also analyzed. The results indicate that MTLE provides an attractive instrument for interest rate forecasting, stochastic volatility modeling, risk management and other applications requiring statistical robustness in complex economic and financial environments.
Suggested Citation
Thomas M. Fullerton & Michael Pokojovy & Andrews T. Anum & Ebenezer Nkum, 2025.
"Maximum Trimmed Likelihood Estimation for Discrete Multivariate Vasicek Processes,"
Economies, MDPI, vol. 13(3), pages 1-28, March.
Handle:
RePEc:gam:jecomi:v:13:y:2025:i:3:p:68-:d:1607138
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecomi:v:13:y:2025:i:3:p:68-:d:1607138. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.