IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v10y2022i1p3-d717851.html
   My bibliography  Save this article

Forecasting Real GDP Growth for Africa

Author

Listed:
  • Philip Hans Franses

    (Econometric Institute, Erasmus School of Economics, Burgemeester Oudlaan 50, NL-3062 PA Rotterdam, The Netherlands)

  • Max Welz

    (Econometric Institute, Erasmus School of Economics, Burgemeester Oudlaan 50, NL-3062 PA Rotterdam, The Netherlands)

Abstract

We propose a simple and reproducible methodology to create a single equation forecasting model (SEFM) for low-frequency macroeconomic variables. Our methodology is illustrated by forecasting annual real GDP growth rates for 52 African countries, where the data are obtained from the World Bank and start in 1960. The models include lagged growth rates of other countries, as well as a cointegration relationship to capture potential common stochastic trends. With a few selection steps, our methodology quickly arrives at a reasonably small forecasting model per country. Compared with benchmark models, the single equation forecasting models seem to perform quite well.

Suggested Citation

  • Philip Hans Franses & Max Welz, 2022. "Forecasting Real GDP Growth for Africa," Econometrics, MDPI, vol. 10(1), pages 1-16, January.
  • Handle: RePEc:gam:jecnmx:v:10:y:2022:i:1:p:3-:d:717851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/10/1/3/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/10/1/3/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan José Echavarría & Andrés González, 2012. "Choques internacionales reales y financieros y su impacto sobre la economía colombiana," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 30(69), pages 14-66, December.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    3. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
    4. Nagayasu, Jun, 2010. "Macroeconomic interdependence in East Asia," Japan and the World Economy, Elsevier, vol. 22(4), pages 219-227, December.
    5. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    6. Mariam Camarero & Juan Sapena & Cecilio Tamarit, 2020. "Modelling Time-Varying Parameters in Panel Data State-Space Frameworks: An Application to the Feldstein–Horioka Puzzle," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 87-114, June.
    7. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    8. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    9. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    10. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    11. Tomohiro Ando & Ruey S. Tsay, 2009. "Model selection for generalized linear models with factor‐augmented predictors," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 207-235, May.
    12. Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2019. "The Impact of Big Data on Firm Performance: An Empirical Investigation," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 33-37, May.
    13. Hertrich Markus, 2019. "A Novel Housing Price Misalignment Indicator for Germany," German Economic Review, De Gruyter, vol. 20(4), pages 759-794, December.
    14. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    15. Michał Brzoza-Brzezina & Jacek Kotłowski, 2009. "Bezwzględna stopa inflacji w gospodarce polskiej," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 9, pages 1-21.
    16. Wang, Lu & Zhou, Ruichao & Wu, Jianhong, 2021. "Determining the number of breaks in large dimensional factor models with structural changes," Economics Letters, Elsevier, vol. 199(C).
    17. Eliana González & Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model For The Colombian Inflation," Borradores de Economia 5273, Banco de la Republica.
    18. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    19. Claus Brand & Daniel Buncic & Jarkko Turunen, 2010. "The Impact of ECB Monetary Policy Decisions and Communication on the Yield Curve," Journal of the European Economic Association, MIT Press, vol. 8(6), pages 1266-1298, December.
    20. Paul Viefers & Ferdinand Fichtner & Simon Junker & Maximilian Podstawski, 2014. "Filtering German Economic Conditions from a Large Dataset: The New DIW Economic Barometer," Discussion Papers of DIW Berlin 1414, DIW Berlin, German Institute for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:10:y:2022:i:1:p:3-:d:717851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.