IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v7y2022i5p54-d803117.html
   My bibliography  Save this article

An Estimated-Travel-Time Data Scraping and Analysis Framework for Time-Dependent Route Planning

Author

Listed:
  • Hong-Le Tee

    (Department of Computer Science, Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Kampar Campus, Perak 31900, Malaysia)

  • Soung-Yue Liew

    (Department of Computer Science, Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Kampar Campus, Perak 31900, Malaysia)

  • Chee-Siang Wong

    (Department of Computer Science, Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Kampar Campus, Perak 31900, Malaysia)

  • Boon-Yaik Ooi

    (Department of Computer Science, Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Kampar Campus, Perak 31900, Malaysia)

Abstract

Generally, a courier company needs to employ a fleet of vehicles to travel through a number of locations in order to provide efficient parcel delivery services. The route planning of these vehicles can be formulated as a vehicle routing problem (VRP). Most existing VRP algorithms assume that the traveling durations between locations are time invariant; thus, they normally use only a set of estimated travel times (ETTs) to plan the vehicles’ routes; however, this is not realistic because the traffic pattern in a city varies over time. One solution to tackle the problem is to use different sets of ETTs for route planning in different time periods, and these data are collectively called the time-dependent estimated travel times (TD-ETTs). This paper focuses on a low-cost and robust solution to effectively scrape, process, clean, and analyze the TD-ETT data from free web-mapping services in order to gain the knowledge of the traffic pattern in a city in different time periods. To achieve the abovementioned goal, our proposed framework contains four phases, namely, (i) Full Data Scraping, (ii) Data Pre-Processing and Analysis, (iii) Fast Data Scraping, and (iv) Data Patching and Maintenance. In our experiment, we used the above framework to obtain the TD-ETT data across 68 locations in Penang, Malaysia, for six months. We then fed the data to a VRP algorithm for evaluation. We found that the performance of our low-cost approach is comparable with that of using the expensive paid data.

Suggested Citation

  • Hong-Le Tee & Soung-Yue Liew & Chee-Siang Wong & Boon-Yaik Ooi, 2022. "An Estimated-Travel-Time Data Scraping and Analysis Framework for Time-Dependent Route Planning," Data, MDPI, vol. 7(5), pages 1-18, April.
  • Handle: RePEc:gam:jdataj:v:7:y:2022:i:5:p:54-:d:803117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/7/5/54/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/7/5/54/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Novoa, Clara & Storer, Robert, 2009. "An approximate dynamic programming approach for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 196(2), pages 509-515, July.
    2. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    2. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A Rule-Based Recourse for the Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 53(5), pages 1334-1353, September.
    3. Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2022. "A Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Capacity: An MDP Model and Dynamic Policy for Post-Decision State Rollout Algorithm in Reinforcement Learning," Mathematics, MDPI, vol. 10(15), pages 1-70, July.
    4. F. Hooshmand Khaligh & S.A. MirHassani, 2016. "A mathematical model for vehicle routing problem under endogenous uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 579-590, January.
    5. Zhang, Junlong & Lam, William H.K. & Chen, Bi Yu, 2016. "On-time delivery probabilistic models for the vehicle routing problem with stochastic demands and time windows," European Journal of Operational Research, Elsevier, vol. 249(1), pages 144-154.
    6. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    7. Guodong Yu & Yu Yang, 2019. "Dynamic routing with real-time traffic information," Operational Research, Springer, vol. 19(4), pages 1033-1058, December.
    8. Bertazzi, Luca & Secomandi, Nicola, 2018. "Faster rollout search for the vehicle routing problem with stochastic demands and restocking," European Journal of Operational Research, Elsevier, vol. 270(2), pages 487-497.
    9. Jumbo, Olga & Moghaddass, Ramin, 2022. "Resource optimization and image processing for vegetation management programs in power distribution networks," Applied Energy, Elsevier, vol. 319(C).
    10. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    11. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    12. Ido Orenstein & Tal Raviv & Elad Sadan, 2019. "Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 683-711, December.
    13. Tianlu Zhao & Yongjian Yang & En Wang, 2020. "Minimizing the average arriving distance in carpooling," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    14. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    15. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    16. Deng, Qichen & Santos, Bruno F., 2022. "Lookahead approximate dynamic programming for stochastic aircraft maintenance check scheduling optimization," European Journal of Operational Research, Elsevier, vol. 299(3), pages 814-833.
    17. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    18. Mathias A. Klapp & Alan L. Erera & Alejandro Toriello, 2018. "The One-Dimensional Dynamic Dispatch Waves Problem," Transportation Science, INFORMS, vol. 52(2), pages 402-415, March.
    19. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    20. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:7:y:2022:i:5:p:54-:d:803117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.