Author
Listed:
- Selcen Çelik-Uzuner
(Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, Trabzon 61080, Turkey)
- Uğur Uzuner
(Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, Trabzon 61080, Turkey)
Abstract
Cell culture laboratories are designed to secure sterile environments for biological studies, and its susceptibility to biological contaminants is a major problem for researchers. Contamination can generally be overcome by frequently disposing of contaminated materials, cleaning and maintaining the sanitation of working areas, but in some cases, it is hard to eradicate the source(s) of contaminating agents completely. In particular, mold and fungal-based contaminants could be a devastating problem for any laboratory. Therefore, various contamination types can repeat over time and result in an increasing problem in the lab. To control and eliminate possible contaminations, a periodic cleaning treatment with disinfectant materials should be a routine procedure of every specialized laboratory, regardless of the existence of any contamination. The conventional method for maintaining hygiene in cell culture laboratories is to clean all surfaces with 70% ethanol; however, this may not be the complete solution. This paper presents a short and easy way to check whether any contamination source(s) are present in laboratories. After identification of the most contaminant-rich areas, without any distinction, each laboratory surface where the culturing samples were taken was comprehensively treated with suggested concentrations of ethanol, sodium hypochlorite and Virkon-S solutions. The method might be useful to regularly check and maintain the cleanliness and hygiene of entire cell culture laboratories to enable the control of possible contaminations in advance.
Suggested Citation
Selcen Çelik-Uzuner & Uğur Uzuner, 2017.
"An Extensive Method for Maintenance of Sterility in Mammalian Cell Culture Laboratory Routine,"
Challenges, MDPI, vol. 8(2), pages 1-6, October.
Handle:
RePEc:gam:jchals:v:8:y:2017:i:2:p:26-:d:117069
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:8:y:2017:i:2:p:26-:d:117069. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.