IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v3y2012i2p212-232d20051.html
   My bibliography  Save this article

5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System

Author

Listed:
  • Rodrigo Lopes De Souza

    (Institut de Recherche sur la Catalyse et l’Environnement de Lyon, IRCELYON, CNRS, Université Lyon 1, 2 avenue Albert Einstein 69626 Villeurbanne, France)

  • Hao Yu

    (Institut de Recherche sur la Catalyse et l’Environnement de Lyon, IRCELYON, CNRS, Université Lyon 1, 2 avenue Albert Einstein 69626 Villeurbanne, France)

  • Franck Rataboul

    (Institut de Recherche sur la Catalyse et l’Environnement de Lyon, IRCELYON, CNRS, Université Lyon 1, 2 avenue Albert Einstein 69626 Villeurbanne, France)

  • Nadine Essayem

    (Institut de Recherche sur la Catalyse et l’Environnement de Lyon, IRCELYON, CNRS, Université Lyon 1, 2 avenue Albert Einstein 69626 Villeurbanne, France)

Abstract

5-Hydroxymethylfurfural (5-HMF) is an important bio-sourced intermediate, formed from carbohydrates such as glucose or fructose. The treatment at 150–250 °C of glucose or fructose in pure water and batch conditions, with catalytic amounts of most of the usual acid-basic solid catalysts, gave limited yields in 5-HMF, due mainly to the fast formation of soluble oligomers. Niobic acid, which possesses both Lewis and Brønsted acid sites, gave the highest 5-HMF yield, 28%, when high catalyst/glucose ratio is used. By contrast, we disclose in this work that the reaction of fructose in concentrated aqueous solutions of carboxylic acids, formic, acetic or lactic acids, used as reactive solvent media, leads to the selective dehydration of fructose in 5-HMF with yields up to 64% after 2 hours at 150 °C. This shows the potential of such solvent systems for the clean and easy production of 5-HMF from carbohydrates. The influence of adding solid catalysts to the carboxylic acid media was also reported, starting from glucose.

Suggested Citation

  • Rodrigo Lopes De Souza & Hao Yu & Franck Rataboul & Nadine Essayem, 2012. "5-Hydroxymethylfurfural (5-HMF) Production from Hexoses: Limits of Heterogeneous Catalysis in Hydrothermal Conditions and Potential of Concentrated Aqueous Organic Acids as Reactive Solvent System," Challenges, MDPI, vol. 3(2), pages 1-21, September.
  • Handle: RePEc:gam:jchals:v:3:y:2012:i:2:p:212-232:d:20051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/3/2/212/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/3/2/212/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morone, Amruta & Apte, Mayura & Pandey, R.A., 2015. "Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 548-565.
    2. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    3. Ramy Gamgoum & Animesh Dutta & Rafael M. Santos & Yi Wai Chiang, 2016. "Hydrothermal Conversion of Neutral Sulfite Semi-Chemical Red Liquor into Hydrochar," Energies, MDPI, vol. 9(6), pages 1-18, June.
    4. Hu, Lei & Wu, Zhen & Jiang, Yetao & Wang, Xiaoyu & He, Aiyong & Song, Jie & Xu, Jiming & Zhou, Shouyong & Zhao, Yijiang & Xu, Jiaxing, 2020. "Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Subhash Paul & Animesh Dutta & Fantahun Defersha, 2018. "Mechanical and Alkaline Hydrothermal Treated Corn Residue Conversion in to Bioenergy and Biofertilizer: A Resource Recovery Concept," Energies, MDPI, vol. 11(3), pages 1-20, February.
    6. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:3:y:2012:i:2:p:212-232:d:20051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.