Author
Listed:
- Wenxuan Wang
(College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China)
- Wei Sun
(College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China)
- Hui Li
(College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China)
- Xiaokang Li
(Gansu Mechanical Science Research Institute Co., Lanzhou 730070, China)
- Yongwei Yuan
(College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China)
Abstract
Although the mechanized harvesting rate of maize in China has exceeded 90%, there are still shortcomings in the mechanized harvesting of silage maize. Some areas still rely on manual harvesting, which is not only inefficient but also requires more labor. Therefore, it is extremely important to realize the mechanized harvesting of silo maize. The aim of this paper is to improve the harvesting efficiency of silo maize, ensure the quality of the silage and reduce the loss of nutrients. Aiming at the problems of wide cutting width, difficult access, low operating efficiency, and uneven straw feeding in the process of corn silage harvesting in terraced fields in hilly and mountainous areas. This study creatively designed a single-disk corn silage harvester. The optimal Latin hypercube method and MATLAB R2021 software are used to analyze the influence of various factors on the evaluation index. The ternary quadratic regression prediction model was constructed by using Isight 5.6 software, and the accuracy of the model was verified by variance analysis and field experiments. In addition, the main program was optimized by writing the program of the SMPSO algorithm. The optimal combination of working parameters was determined: the working speed was 1.00 m/s, the cutter rotation speed was 1085.89 rpm, and the drum rotation speed was 30 m/s. At that time, the machine productivity was 38 t·h −1 , the average standard grass length rate was 82.15%, and the stubble qualification rate was 91.95%. After two field trials, the results showed that all indicators met the national standards and industry standards, which confirmed the efficiency and practicality of this design.
Suggested Citation
Wenxuan Wang & Wei Sun & Hui Li & Xiaokang Li & Yongwei Yuan, 2025.
"Design and Experiment of a Single-Disk Silage Corn Harvester,"
Agriculture, MDPI, vol. 15(7), pages 1-23, March.
Handle:
RePEc:gam:jagris:v:15:y:2025:i:7:p:751-:d:1625045
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:7:p:751-:d:1625045. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.