Author
Listed:
- Romero-Ceciliano Marysol
(Biotecnología de Plantas y Hongos Micorrícicos Arbusculares (Biotec-PYHMA), Escuela de Biología y Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), Universidad de Costa Rica, San Pedro de Montes de Oca 11501-2060, San José, Costa Rica)
- Andrade-Torres Antonio
(Biotecnología y Ecología de Organismos Simbióticos, CAUV-173 Ecología y Manejo de la Biodiversidad, INBIOTECA (Instituto de Biotecnología y Ecología Aplicada), Universidad Veracruzana, Av. de las Culturas Veracruzanas No. 101, Col. E. Zapata, Xalapa 91090, Veracruz, Mexico)
- Artavia-Salazar Evelyn
(Biotecnología de Plantas y Hongos Micorrícicos Arbusculares (Biotec-PYHMA), Escuela de Biología y Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), Universidad de Costa Rica, San Pedro de Montes de Oca 11501-2060, San José, Costa Rica)
- Solís-Ramos Laura Yesenia
(Biotecnología de Plantas y Hongos Micorrícicos Arbusculares (Biotec-PYHMA), Escuela de Biología y Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), Universidad de Costa Rica, San Pedro de Montes de Oca 11501-2060, San José, Costa Rica)
Abstract
In vitro cultivation of arbuscular mycorrhizal fungi (AMF) is challenging due to their biotrophic symbiosis. The principal aim of this study was to demonstrate the effect of establishing in vitro dual cultures of arbuscular mycorrhizal fungi (AMF) inoculated on Swietenia macrophylla (mahogany) roots on plant growth. Furthermore, it was sought to demonstrate that plant colonization by Glomeromycota can be achieved with a replicable protocol. This study established monoxenic cultures of carrot ( Daucus carota ) Ri T-DNA ROC inoculated with Glomus sp. on two-compartment plates. At 75 days, hyphal growth reached 223.93 mm in the root compartment and 103.71 mm in the hyphal compartment. Spores produced in vitro measured 26.14 ± 1.70 µm, smaller than ex vitro spores (101.2 ± 4.22 µm). Rhodotorula mucilaginosa was isolated from cultures and appeared to stimulate hyphal growth and root–fungal contact. From these cultures, a dual culture of mahogany inoculated with Glomus sp. was established. No significant differences were observed between inoculated and non-inoculated plants in stem length, root length, root number, or leaf number at 30 days. Spore production ranged from 10,166 to 27,696 per plate, averaging 14,795 ± 3301, with hyphal lengths of 3655.46 ± 308.75 mm. Hyphal development included running and branching patterns, with solitary and clustered spores. Spore diameter averaged 27.68 ± 3.85 µm. Arbuscular colonization reached 41.49% at 30 days and 52.13% at 75 days, exceeding rates reported for other culture systems. Monoxenic cultures are a reliable, aseptic source of high-quality inoculum, supporting biofertilizer production and biotechnological applications. These methods provide valuable tools for studies involving AMF, such as those demonstrated with mahogany.
Suggested Citation
Romero-Ceciliano Marysol & Andrade-Torres Antonio & Artavia-Salazar Evelyn & Solís-Ramos Laura Yesenia, 2025.
"Establishing Monoxenic Culture of Arbuscular Mycorrhizal Fungus Glomus sp. Through In Vitro Root Organ Culture and Swietenia macrophylla King In Vitro Cultures,"
Agriculture, MDPI, vol. 15(7), pages 1-17, March.
Handle:
RePEc:gam:jagris:v:15:y:2025:i:7:p:673-:d:1617480
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:7:p:673-:d:1617480. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.