Author
Listed:
- Yunpeng Yuan
(College of Engineering, Nanjing Agricultural University, Nanjing 210095, China)
- Guoxiang Sun
(College of Engineering, Nanjing Agricultural University, Nanjing 210095, China
Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing 210031, China)
- Guangyu Chen
(College of Engineering, Nanjing Agricultural University, Nanjing 210095, China)
- Qihua Zhang
(College of Engineering, Nanjing Agricultural University, Nanjing 210095, China)
- Lingwei Liang
(College of Engineering, Nanjing Agricultural University, Nanjing 210095, China)
Abstract
The effective diagnosis of mild nutrient stress across the complete growth cycle of facility-grown tomatoes is challenging. This study proposes a deep learning framework based on CNN + LSTM, using canopy near-infrared spectroscopy from different growth stages of tomatoes as input, to diagnose mild stress of nitrogen (N), potassium (K), and calcium (Ca) throughout the entire growth cycle of facility-grown tomatoes. The study compares the diagnostic performance of Random Forest (RF), Support Vector Machine (SVM), Partial Least Squares (PLS), Convolutional Neural Networks (CNNs), and CNN + Long Short-Term Memory (LSTM) models for detecting mild nutrient stress in facility-grown tomatoes. Firstly, the preprocessing method of spectral characteristic bands combined with Savitzky‒Golay (SG) + Standard Normal Variate (SNV) was determined. Subsequently, all sample data were divided into six groups: N-deficient, K-deficient, Ca-deficient, N-excess, K-excess, and Ca-excess. The aforementioned models were then used for classification prediction. The results show that RF and CNN + LSTM models demonstrated good predictive performance. Specifically, RF achieved accuracy rates of 70.14%, 90.81%, 88.59%, and 85.37% in the classification tasks of Ca-deficient, N-excess, K-excess, and Ca-excess, respectively. The CNN + LSTM model achieved accuracy rates of 93.33%, 63.33%, 99.2%, 83.33%, and 98.52% in the classification tasks of K-deficient, Ca-deficient, N-excess, K-excess, and Ca-excess, respectively. Finally, in the Leave-One-Group-Out Validation (LOGOV) for validating the model’s generalisation performance, RF performed better in the N-deficient, K-deficient, and Ca-deficient tasks, achieving diagnostic accuracy rates of 80.19%, 81.43%, and 77.02%, respectively. The CNN + LSTM model showed a diagnostic accuracy rate of 66.72% in the N-excess classification task. The study concludes that, given complete training data, the CNN + LSTM model can effectively diagnose mild nutrient stress (N, K, and Ca) in facility-grown tomatoes in most scenarios.
Suggested Citation
Yunpeng Yuan & Guoxiang Sun & Guangyu Chen & Qihua Zhang & Lingwei Liang, 2025.
"A Model for Diagnosing Mild Nutrient Stress in Facility-Grown Tomatoes Throughout the Entire Growth Cycle,"
Agriculture, MDPI, vol. 15(3), pages 1-16, January.
Handle:
RePEc:gam:jagris:v:15:y:2025:i:3:p:307-:d:1580584
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:307-:d:1580584. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.