Author
Listed:
- Suiyuan Shen
(College of Engineering, South China Agricultural University, Guangzhou 510642, China)
- Jiyu Li
(College of Engineering, South China Agricultural University, Guangzhou 510642, China)
- Yu Chen
(College of Engineering, South China Agricultural University, Guangzhou 510642, China)
- Jia Lv
(College of Engineering, South China Agricultural University, Guangzhou 510642, China)
Abstract
In the context of agricultural unmanned helicopters, the complex wind disturbances over crop fields and structural perturbations due to variations in pesticide container weights present substantial challenges to flight safety. To address these issues, this paper proposes an innovative fuzzy extended state observer-based sliding mode control (FESO-SMC) methodology aimed at enhancing the aircraft’s resilience against such disturbances. Initially, this study adopts a state expansion strategy to integrate both wind and structural disturbances into a comprehensive disturbance model applicable to the agricultural unmanned helicopter. Following this, a sliding mode control law is formulated with consideration for unknown total disturbances, employing specific sliding mode functions alongside exponential reaching laws. An extended state observer is simultaneously implemented within the sliding mode control framework to estimate and mitigate these disturbances, thereby augmenting the disturbance rejection capabilities of the flight control system. Additionally, the integration of fuzzy logic facilitates adaptive parameter adjustment for the extended state observer, leading to more accurate disturbance estimation. Consequently, a trajectory tracking control system tailored specifically for the agricultural unmanned helicopter has been developed, and its performance was evaluated through simulation experiments. The results indicate that, under certain disturbances, the attitude control error of the FESO-SMC controller is reduced to one-fifth that of traditional sliding mode controllers, while position control accuracy is enhanced more than twofold, thus demonstrating that the proposed FESO-SMC controller not only exhibits superior anti-disturbance capability and robustness but also achieves higher tracking accuracy compared to conventional sliding mode controller.
Suggested Citation
Suiyuan Shen & Jiyu Li & Yu Chen & Jia Lv, 2025.
"Fuzzy Extended State Observer-Based Sliding Mode Control for an Agricultural Unmanned Helicopter,"
Agriculture, MDPI, vol. 15(3), pages 1-17, January.
Handle:
RePEc:gam:jagris:v:15:y:2025:i:3:p:306-:d:1580534
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:306-:d:1580534. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.