Author
Listed:
- Imran
(College of Engineering, South China Agriculture University, Guangzhou 510642, China)
- Liang Ke
(College of Engineering, South China Agriculture University, Guangzhou 510642, China)
- Dong Liu
(College of Engineering, South China Agriculture University, Guangzhou 510642, China)
- Huifen Li
(Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China)
- Jiyu Li
(College of Engineering, South China Agriculture University, Guangzhou 510642, China)
Abstract
A comprehensive investigation into the aero-thermodynamic impacts of UAV-generated airflow on the rice microclimate is essential to elucidate the complex relationships between wind speed, temperature, and temporal dynamics during the critical growth stages of rice. Focusing on the vulnerable stages of rice such as heading, panicle, and flowering, this research aims to advance the understanding of microclimatic influences on rice crops, thereby informing the development of UAV-based strategies to enhance crop resilience and optimize yields. By utilizing UAV rotor downwash, the research examines wind temperature and speed at three key diurnal intervals: 9:00 a.m., 12:00 p.m., and 3:00 p.m. At 9:00 a.m., UAV-induced airflow creates a stable microclimate with favourable temperatures (27.45–28.45 °C) and optimal wind speeds (0.0700–2.050 m/s), which promote and support pollen transfer and grain setting. By 12:00 p.m., wind speeds peak at 2.370 m/s, inducing evaporative cooling while maintaining temperature stability, yet leading to some moisture loss. At 3:00 p.m., wind temperatures reach 28.48 °C, with a 72% decrease in wind speed from midday, effectively conserving moisture during critical growth phases. The results reveal that UAV airflow positively influences panicle and flowering stages, where carefully moderated wind speeds (up to 3 m/s) and temperatures reduce pollen sterility, enhance fertilization, and optimize reproductive development. This highlights the potential of UAV-engineered microclimate management to mitigate stress factors and improve yield through targeted airflow regulation. Key agronomic parameters showed significant improvements, including stem diameter, canopy temperature regulation, grain filling duration, productive tillers (increasing by 30.77%), total tillers, flag leaf area, grains per panicle (rising by 46.55%), biological yield, grain yield (surging by 70.75%), and harvest index. Conclusively, optimal aero-thermodynamic effects were observed with 9:00 a.m. rotor airflow applications during flowering, outperforming midday and late-afternoon treatments. Additionally, 12:00 p.m. airflow during flowering significantly increased the yield. The interaction between rotor airflow timing and growth stage (RRS × GS) exhibited low to moderate effects, underscoring the importance of precise timing in maximizing rice productivity.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:1:p:78-:d:1558214. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.