Author
Listed:
- Minghu Zhao
(School of Microelectronics, Southern University of Science and Technology, Shenzhen 518005, China)
- Dashuai Wang
(School of Microelectronics, Southern University of Science and Technology, Shenzhen 518005, China)
- Qing Yan
(School of Mechanical & Automotive Engineering, Liaocheng University, Liaocheng 252000, China)
- Zhuolin Li
(School of Microelectronics, Southern University of Science and Technology, Shenzhen 518005, China)
- Xiaoguang Liu
(School of Microelectronics, Southern University of Science and Technology, Shenzhen 518005, China)
Abstract
Maize lodging is a prevalent stress that can significantly diminish corn yield and quality. Unmanned aerial vehicles (UAVs) remote sensing is a practical means to quickly obtain lodging information at field scale, such as area, severity, and distribution. However, existing studies primarily use machine learning (ML) methods to qualitatively analyze maize lodging (lodging and non-lodging) or estimate the maize lodging percentage, while there is less research using deep learning (DL) to quantitatively estimate maize lodging parameters (type, severity, and direction). This study aims to introduce advanced DL algorithms into the maize lodging classification task using UAV-multispectral images and investigate the advantages of DL compared with traditional ML methods. This study collected a UAV-multispectral dataset containing non-lodging maize and lodging maize with different lodging types, severities, and directions. Additionally, 22 vegetation indices (VIs) were extracted from multispectral data, followed by spatial aggregation and image cropping. Five ML classifiers and three DL models were trained to classify the maize lodging parameters. Finally, we compared the performance of ML and DL models in evaluating maize lodging parameters. The results indicate that the Random Forest (RF) model outperforms the other four ML algorithms, achieving an overall accuracy (OA) of 89.29% and a Kappa coefficient of 0.8852. However, the maize lodging classification performance of DL models is significantly better than that of ML methods. Specifically, Swin-T performs better than ResNet-50 and ConvNeXt-T, with an OA reaching 96.02% and a Kappa coefficient of 0.9574. This can be attributed to the fact that Swin-T can more effectively extract detailed information that accurately characterizes maize lodging traits from UAV-multispectral data. This study demonstrates that combining DL with UAV-multispectral data enables a more comprehensive understanding of maize lodging type, severity, and direction, which is essential for post-disaster rescue operations and agricultural insurance claims.
Suggested Citation
Minghu Zhao & Dashuai Wang & Qing Yan & Zhuolin Li & Xiaoguang Liu, 2024.
"UAV-Multispectral Based Maize Lodging Stress Assessment with Machine and Deep Learning Methods,"
Agriculture, MDPI, vol. 15(1), pages 1-19, December.
Handle:
RePEc:gam:jagris:v:15:y:2024:i:1:p:36-:d:1554135
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2024:i:1:p:36-:d:1554135. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.