Author
Listed:
- Ziyi Yu
(Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
These authors contributed equally to this work.)
- Shuangda Li
(Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
These authors contributed equally to this work.)
- Yan Hong
(Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)
Abstract
Vase life is a decisive measure of the marketability of post-harvest physiology in cut flowers. In the process of petal senescence, the cut chrysanthemum ( Chrysanthemum × morifolium ) ‘Pingpong’ group develops severe capitulum collapse which manifests as wilting and browning, leading to shorter vase life. Melatonin (MT), tea polyphenols (TPs), and chitosan (CT) are natural alternatives to chemical compounds with proven preservation effects. In this study, the possibility of mitigating capitulum collapse using the preservation solutions of these three eco-friendly ingredients was investigated on four varieties from the ‘Pingpong’ group, aiming to delay the senescence process. The effects on vase life of 0.02/0.04 mmol·L −1 MT, 200/400 mg·L −1 TPs, and 0.10/0.20 g·L −1 CT were, respectively, assessed with the basis of 20 g·L −1 sucrose and 250 mg·L −1 citric acid. The yellow and white varieties tend to have a longer vase life compared with the green and pink varieties. Compared to the control with only base ingredients, the greatest delay in capitulum collapse was observed with 0.04 mmol·L −1 MT in the yellow variety, maximizing the vase life to 13.4 days. MT maintained the best ornamental quality of the capitulum by decelerating fresh weight and flower diameter loss in terms of all varieties. TPs significantly increased flower diameter to improve vase life up to four more days. However, CT caused significant negative effects on vase life, with severe loss of both flower diameter and fresh weight. Therefore, the application of 0.04 mmol·L −1 MT and 200 mg·L −1 TPs was suggested to enhance the marketability of cut ‘Pingpong’, which highlighted the eco-friendly potential of post-harvest treatments.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1507-:d:1469811. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.