IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i8p1416-d1460602.html
   My bibliography  Save this article

Design and Simulation of a Combined Trencher for Transverse Sugarcane Planter

Author

Listed:
  • Biao Zhang

    (College of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Xinsan Yang

    (College of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Yingying Zhu

    (College of Mechanical Engineering, Guangxi University, Nanning 530004, China)

Abstract

The trencher design of the pre-cut transverse sugarcane planter is the basis for realizing deep planting and shallow burial. Aimed at the problems of insufficient seeding space provided by furrows and high resistance to trenching, a structural configuration of a combined trencher suitable for transverse cane planting agronomy was proposed to improve the stability, simplicity, and efficiency of trenching. The collaborative operations of components such as the soil lifting of the leak-proof plow, the soil fragmentation and throwing of the double-disc rotary tiller, the rebound of the fender, the lateral diversion of the furrowing plow, and the motion control of the double rocker arms were comprehensively utilized. The trenching principle of using double-sided guards to block soil backfilling to form a seeding space was applied, as well as pre-side diversion to reduce the forward resistance of plow surfaces. The simulation of the trenching process showed that the combined trencher was available in terms of soil particle transfer and dynamic space-forming capabilities, and the stress distribution of the advancing plow surface was analyzed. Moreover, based on the minimum resistance characteristics, the optimal spacing between the rotary tiller and the furrowing plow and the blade arrangement mode were configured, and the structural parameters of the furrowing plow were optimized to include a soil penetration angle of 20°, an oblique cutting angle of 75°, and a curvature radius of 280 mm. Field experiments have proven that the soil entry movement trajectory, the length and width of the accessible seed placement space, and the average planting depth of cane seeds could all achieve respective design anticipations of the combined trencher. The measured trenching resistance was 7609.7 N, with an error of 22.2% from the predicted value under the same configuration.

Suggested Citation

  • Biao Zhang & Xinsan Yang & Yingying Zhu, 2024. "Design and Simulation of a Combined Trencher for Transverse Sugarcane Planter," Agriculture, MDPI, vol. 14(8), pages 1-17, August.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1416-:d:1460602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/8/1416/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/8/1416/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1416-:d:1460602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.