Author
Listed:
- Xianrui Kong
(College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture, Wuhan 430070, China)
- Qing Cao
(College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture, Wuhan 430070, China)
- Zhiyou Niu
(College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture, Wuhan 430070, China)
Abstract
Particle breakage is a common phenomenon during the processes of production, storage, and transportation. Because of the requirements for pellet integrity in poultry farming, research on the breakage characteristics of feed pellets is necessary. In this paper, repeated compression tests under different loading forces and repeated impact tests under different air pressures were carried out with feed pellets as the research object. The breakage behaviors were described, and the particle size distribution of feed pellets was analyzed quantitatively. The results revealed a positive correlation between crack density in feed particle beds and loading force. The compression process was divided into three stages based on force–displacement curves. The size of the feed pellets during repeated impacts decreased continuously and was negatively correlated with air pressure. The Weibull function accurately described the particle size distribution, with R 2 values exceeding 0.97 and 0.96. The Weibull parameters showed a steady breakage degree in compression tests and a growing breakage degree in impact tests. The variation in energy and pulverization rate under different loading conditions was examined as the number of loading cycles increased. The relationship between energy and pulverization rates was fitted, showing that both parameters increased with loading cycles in different loading methods. The model of Vogel and Peukert could describe the relationship between energy and pulverization rate well, with R 2 values exceeding 0.94. The minimum energy required for pellet breakage was higher in compression than in impact due to the compaction of the feed particle bed during repeated compression. The results can provide basic theory and data support for breakage characteristics and quality evaluation of feed pellets.
Suggested Citation
Xianrui Kong & Qing Cao & Zhiyou Niu, 2024.
"Experimental Research on Breakage Characteristics of Feed Pellets under Different Loading Methods,"
Agriculture, MDPI, vol. 14(8), pages 1-16, August.
Handle:
RePEc:gam:jagris:v:14:y:2024:i:8:p:1401-:d:1459153
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1401-:d:1459153. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.