YOLOv8-RCAA: A Lightweight and High-Performance Network for Tea Leaf Disease Detection
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yuzhuo Zhang & Tianyi Wang & Yong You & Decheng Wang & Dongyan Zhang & Yuchan Lv & Mengyuan Lu & Xingshan Zhang, 2023. "YOLO-Sp: A Novel Transformer-Based Deep Learning Model for Achnatherum splendens Detection," Agriculture, MDPI, vol. 13(6), pages 1-18, June.
- Marwan Albahar, 2023. "A Survey on Deep Learning and Its Impact on Agriculture: Challenges and Opportunities," Agriculture, MDPI, vol. 13(3), pages 1-22, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abdullah Addas & Muhammad Tahir & Najma Ismat, 2023. "Enhancing Precision of Crop Farming towards Smart Cities: An Application of Artificial Intelligence," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
- Shouwei Wang & Lijian Yao & Lijun Xu & Dong Hu & Jiawei Zhou & Yexin Chen, 2024. "An Improved YOLOv7-Tiny Method for the Segmentation of Images of Vegetable Fields," Agriculture, MDPI, vol. 14(6), pages 1-16, May.
- Shenghao Ye & Xinyu Xue & Shuning Si & Yang Xu & Feixiang Le & Longfei Cui & Yongkui Jin, 2023. "Design and Testing of an Elastic Comb Reciprocating a Soybean Plant-to-Plant Seedling Avoidance and Weeding Device," Agriculture, MDPI, vol. 13(11), pages 1-23, November.
More about this item
Keywords
tea leaf diseases; disease detection; YOLOv8-RCAA; CBAM attention mechanism; RepVGG;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1240-:d:1444163. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.