IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i7p1181-d1437954.html
   My bibliography  Save this article

An Electric Gripper for Picking Brown Mushrooms with Flexible Force and In Situ Measurement

Author

Listed:
  • Haonan Shi

    (Key Laboratory of Intelligent Agricultural Equipment of Jiangsu Province, College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)

  • Gaoming Xu

    (College of Intelligent Manufacturing and Equipment, Jiangmen Polytechnic, Jiangmen 529090, China)

  • Wei Lu

    (Key Laboratory of Intelligent Agricultural Equipment of Jiangsu Province, College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)

  • Qishuo Ding

    (Key Laboratory of Intelligent Agricultural Equipment of Jiangsu Province, College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)

  • Xinxin Chen

    (College of Agricultural Engineering, Jiangsu University, Zhenjiang 212001, China)

Abstract

As brown mushrooms are both delicious and beneficial to health, the global production and consumption of brown mushrooms have increased significantly in recent years. Currently, to ensure the quality of brown mushrooms, selective manual picking is required, and the delicate surface of the mushrooms must not be damaged during the picking process. The labor cost of picking accounts for 50–80% of the total labor cost in the entire production process, and the high-humidity, low-temperature plant environment poses a risk of rheumatism for the laborers. In this paper, we propose a novel underactuated gripper based on a lead screw and linear bearings, capable of operating with flexible force control while simultaneously measuring the diameter of the mushrooms. The gripper features three degrees of freedom: lifting, grasping, and rotation, and enabling it to approach, grasp, and detach the mushroom. A thin-film force sensor is installed on the inner side of the fingers to achieve accurate grip force measurement. The use of a PID algorithm ensures precise grip force control, thereby protecting the brown mushrooms from damage. Experimental results demonstrate that the proposed gripper has a static grasping force error of 0.195 N and an average detachment force overshoot of 1.31 N during the entire picking process. The in situ measurement of the mushroom diameter achieves 97.3% accuracy, with a success rate of 98.3%. These results indicate that the gripper achieves a high success rate in harvesting, a low damage rate, and accurate diameter measurement.

Suggested Citation

  • Haonan Shi & Gaoming Xu & Wei Lu & Qishuo Ding & Xinxin Chen, 2024. "An Electric Gripper for Picking Brown Mushrooms with Flexible Force and In Situ Measurement," Agriculture, MDPI, vol. 14(7), pages 1-15, July.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:7:p:1181-:d:1437954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/7/1181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/7/1181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huimin Xu & Gaohong Yu & Chenyu Niu & Xiong Zhao & Yimiao Wang & Yijin Chen, 2023. "Design and Experiment of an Underactuated Broccoli-Picking Manipulator," Agriculture, MDPI, vol. 13(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kairan Lou & Zongbin Wang & Bin Zhang & Qiu Xu & Wei Fu & Yang Gu & Jinyi Liu, 2024. "Analysis and Experimentation on the Motion Characteristics of a Dragon Fruit Picking Robot Manipulator," Agriculture, MDPI, vol. 14(11), pages 1-20, November.
    2. Cheng Shen & Zhong Tang & Maohua Xiao, 2023. "“Eyes”, “Brain”, “Feet” and “Hands” of Efficient Harvesting Machinery," Agriculture, MDPI, vol. 13(10), pages 1-3, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:7:p:1181-:d:1437954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.