IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i6p879-d1406591.html
   My bibliography  Save this article

Exploring the Potential of Russula griseocarnosa : A Molecular Ecology Perspective

Author

Listed:
  • Yuanchao Liu

    (National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China)

  • Tianqiao Yong

    (National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China)

  • Manjun Cai

    (National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China)

  • Xiaoxian Wu

    (National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China)

  • Huiyang Guo

    (National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China)

  • Yizhen Xie

    (National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China)

  • Huiping Hu

    (National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China)

  • Qingping Wu

    (National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China)

Abstract

Russula griseocarnosa , an edible and medicinal mushroom abundant in nutrients and notable bioactivities, is predominantly grown in the broad-leaved forest with trees of the family Fagaceae in southern China. This species forms ectomycorrhizal associations with plant roots and cannot be artificially cultivated currently. Previous research indicates a strong correlation between the growth of R. griseocarnosa and factors such as the host plant, climate variables (specifically mean temperature and precipitation from June to October), and the rhizosphere microbiota of its habitat. However, comprehensive studies on the fundamental biology of this species are lacking. The interaction between R. griseocarnosa and its host plant, as well as the mechanisms underlying the microbial community dynamics within its habitat, remain ambiguous. The limited repertoire and diversity of carbohydrate-active enzymes (CAZymes) in R. griseocarnosa relative to saprophytic fungi may contribute to its recalcitrance to cultivation on synthetic media. The specific core enzyme and the substances provided by the host plant to facilitate growth are yet to be elucidated, posing a significant challenge in the artificial cultivation of R. griseocarnosa . The habitat of R. griseocarnosa harbours unique microbial communities, indicating the presence of potentially beneficial microorganisms that could be exploited for artificial propagation and conservation efforts. However, the lack of definitive functional verification experiments hinders the realization of this promising prospect. This review offers a comprehensive overview of the nutritional profile and health benefits of R. griseocarnosa , emphasizing recent developments in its isolation, molecular ecology, and artificial cultivation. Additionally, it explores prospective advancements in R. griseocarnosa research, aiming to enrich our foundational understanding for applied purposes and fostering progress in the realm of ectomycorrhizal edible mushrooms.

Suggested Citation

  • Yuanchao Liu & Tianqiao Yong & Manjun Cai & Xiaoxian Wu & Huiyang Guo & Yizhen Xie & Huiping Hu & Qingping Wu, 2024. "Exploring the Potential of Russula griseocarnosa : A Molecular Ecology Perspective," Agriculture, MDPI, vol. 14(6), pages 1-23, May.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:879-:d:1406591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/6/879/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/6/879/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. Martin & A. Aerts & D. Ahrén & A. Brun & E. G. J. Danchin & F. Duchaussoy & J. Gibon & A. Kohler & E. Lindquist & V. Pereda & A. Salamov & H. J. Shapiro & J. Wuyts & D. Blaudez & M. Buée & P. Broks, 2008. "The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis," Nature, Nature, vol. 452(7183), pages 88-92, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yogesh K. Gupta & Francismar C. Marcelino-Guimarães & Cécile Lorrain & Andrew Farmer & Sajeet Haridas & Everton Geraldo Capote Ferreira & Valéria S. Lopes-Caitar & Liliane Santana Oliveira & Emmanuell, 2023. "Major proliferation of transposable elements shaped the genome of the soybean rust pathogen Phakopsora pachyrhizi," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:879-:d:1406591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.