Author
Listed:
- Xiaoyu Wu
(College of Engineering, China Agricultural University, Beijing 100083, China)
- Sha Liu
(College of Engineering, China Agricultural University, Beijing 100083, China)
Abstract
Reducing cumbersome mechanical control components is one of the trends of modern agricultural machinery towards a high degree of automation. Whether the control components of sugarcane harvesters can gradually be replaced by central control screens, similar to car cabins, is an unresolved question. At the level of human machine interaction, this involves comparing the efficiency between joystick and touch screen control. This paper conducts a simulated experiment to compare and study the efficiency and user experience of joystick and touch screen control in adjusting the topper and base cutter heights of sugarcane harvesters, aiming to provide a reasonable basis for the design of control interfaces in sugarcane harvester cabins. The electromyographic signals, experiment duration, and subjective cognitive evaluations of participants in both the topper and base cutter groups were analyzed. The results showed that the efficiency, learnability, and ease of use of different control methods varied under different operational tasks. For the topper that corresponds to the operating behavior and height transformation in real time, joystick control demonstrated superior ease of use and operational efficiency compared to touch screen control, with weaker learnability. There was no discernible difference in muscle activation levels between the two control methods. Consequently, joystick control is deemed more suitable for the height adjustment of the topper. Regarding the base cutter with non-real-time mapping of operating behavior and height changes, no significant disparity in ease of use and learnability was observed between the two control methods. Touch screen control yielded lower muscle activation levels and garners higher overall subjective cognitive scale ratings. Thus, touch screen control is considered more suitable for base cutter height adjustment. Lastly, the paper proposes the optimal combination of software and hardware for control components in sugarcane harvester cabins, and provides an objective and multidimensional experimental analysis method for future research on similar human machine interaction interfaces.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:4:p:601-:d:1373482. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.