IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i3p414-d1350650.html
   My bibliography  Save this article

Optimal Soil, Climate, and Management Factors for Maximizing Crop Yield and Soil Nutrients in a Rice–Oilseed Rotation System with Straw Return

Author

Listed:
  • Jianling Song

    (College of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi 562400, China
    These authors contributed equally to this work.)

  • Quanquan Sun

    (College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China
    These authors contributed equally to this work.)

  • Qiankun Li

    (College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China)

  • Umair Ashraf

    (Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan)

  • Xu Hu

    (College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China)

  • Lin Li

    (College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China)

Abstract

Straw return (SR) has been widely recommended as a conservation agricultural practice in China. However, the effects of SR on crop yield and soil properties are inconsistent across studies of rice–oilseed rape cropping systems in China. This study aimed to investigate the effects of SR on crop yield and soil nutrient content in a rice–oilseed rotation system, and to understand the mechanism of straw return on the difference in yield increases between rice and oilseed rape. Additionally, suitable climate factors, soil properties, and agricultural practices were identified to achieve maximum increases in yield and soil nutrients in a rice–oilseed rotation under SR. This paper is based on a meta-analysis of 1322 observations from 83 peer-reviewed studies to evaluate the effects of climate, initial soil conditions, and agricultural management practices on rice and oilseed rape yields and soil nutrients under SR. The results showed that the responses of oilseed rape and rice yield remained positive, with 12.37% and 6.54% increases, and were significantly higher under SR than the control (no SR). Moreover, SR significantly increased the contents of several soil nutrients (soil organic carbon (SOC), total nutrients, available nutrients) and microbial biomass carbon (MBC) and nitrogen (MBN). Interestingly, the increase in crop yields was attributed to the increase in SOC, total nitrogen, and available potassium. Additionally, the increase in yields was mainly affected by climate factors, initial soil properties, and agronomic practices. For example, both mean annual temperature (MAT) and mean annual precipitation (MAP) had a positive correlation with crop yield increases under SR ( p < 0.01). Initial soil conditions such as low SOC and total nitrogen content were more suitable for increased rice yield under SR, while the opposite was true for increased oilseed rape yield. Without fertilization, the SR did not significantly improve crop yield and soil nutrients, while it was more pronounced with N fertilization at 150–180 kg hm −2 . The positive effect of SR on crop yields is more evident with plowing tillage, whereas the SR caused the highest increase in soil nutrients with the no-tillage condition. These findings have important implications for further improving crop yield, SOC, and soil nutrients in the Chinese rice–oilseed cropping system through straw return.

Suggested Citation

  • Jianling Song & Quanquan Sun & Qiankun Li & Umair Ashraf & Xu Hu & Lin Li, 2024. "Optimal Soil, Climate, and Management Factors for Maximizing Crop Yield and Soil Nutrients in a Rice–Oilseed Rotation System with Straw Return," Agriculture, MDPI, vol. 14(3), pages 1-19, March.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:3:p:414-:d:1350650
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/3/414/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/3/414/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Huabin & Huang, Huang & Zhang, Canming & Li, Jingyi, 2016. "National-scale paddy-upland rotation in Northern China promotes sustainable development of cultivated land," Agricultural Water Management, Elsevier, vol. 170(C), pages 20-25.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoxia Guo & Qinqin Guo & Yujie Cai & Ge Wang, 2021. "Unraveling Risk Networks of Cultivated Land Protection: An Exploratory Stakeholder-Oriented Case Study in Xiliuhe Town, Hubei Province, China," Land, MDPI, vol. 10(11), pages 1-26, November.
    2. Álvaro-Francisco Morote & Jorge Olcina & Antonio-Manuel Rico, 2017. "Challenges and Proposals for Socio-Ecological Sustainability of the Tagus–Segura Aqueduct (Spain) under Climate Change," Sustainability, MDPI, vol. 9(11), pages 1-24, November.
    3. Li Wang & Yong Zhou & Qing Li & Tao Xu & Zhengxiang Wu & Jingyi Liu, 2021. "Application of Three Deep Machine-Learning Algorithms in a Construction Assessment Model of Farmland Quality at the County Scale: Case Study of Xiangzhou, Hubei Province, China," Agriculture, MDPI, vol. 11(1), pages 1-23, January.
    4. Meijia Xiao & Qingwen Zhang & Liqin Qu & Hafiz Athar Hussain & Yuequn Dong & Li Zheng, 2019. "Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    5. Sun, Jian & Dang, Zhiliang & Zheng, Shaokui, 2017. "Development of payment standards for ecosystem services in the largest interbasin water transfer projects in the world," Agricultural Water Management, Elsevier, vol. 182(C), pages 158-164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:3:p:414-:d:1350650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.