Author
Listed:
- Min Zhang
(Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
These authors contributed equally to this work.)
- Feng Shi
(Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
These authors contributed equally to this work.)
- Shiyu Peng
(Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China)
- Rushan Chai
(Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China)
- Liangliang Zhang
(Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China)
- Chaochun Zhang
(Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China)
- Laichao Luo
(Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China)
Abstract
Although phosphorus (P) fertilizer application is widely used to improve production, irrational P application has a negative impact on the zinc (Zn) nutrition of cereal crops. Previous researchers observed and confirmed that P application decreases grain Zn concentrations and bioavailability in cereal crops. However, it remains unclear whether different P fertilizer types can alleviate the antagonism of P and Zn in the soil and grain and, thus, enhance the Zn nutritional level of cereal crops while maintaining production. Thus, a completely randomized pot experiment was conducted on winter wheat grown in two calcareous soils (lime concretion black soil and fluvo-aquic soil). Five P fertilizer types (single superphosphate, diammonium phosphate, fused calcium–magnesium phosphate, triple superphosphate, and ammonium polyphosphate, abbreviated, respectively, as SSP, DAP, FMP, TSP, and APP) were applied to each soil compared to no P fertilizer (CK). Plant and topsoil samples were collected during the flowering and maturity stages of winter wheat, and biomass, Zn concentrations in each organ, and grain phytic acid concentrations were analyzed. Grain yield was not affected by the application of different P fertilizer types to lime concretion black soil, while it was significantly increased by the application of TSP and APP to fluvo-aquic soil. The application of DAP and APP effectively promoted soil available Zn concentrations in both calcareous soils. In lime concretion black soil, the application of FMP significantly increased Zn remobilization to grains, while the application of DAP increased post-anthesis Zn uptake, thereby increasing grain Zn concentrations and its bioavailability. In fluvo-aquic soil, post-anthesis Zn remobilization and uptake were significantly increased by the application of TSP and APP, finally achieving higher grain Zn concentrations and Zn harvest index and effectively promoting grain Zn bioavailability. In conclusion, the rational application of DAP to wheat grown in lime concretion black soil and of TSP or APP to fluvo-aquic soil can achieve superior grain Zn nutrition quality while concurrently retaining high production and high P use efficiency, reducing micronutrient deficiency and further contributing to green agricultural development and human health.
Suggested Citation
Min Zhang & Feng Shi & Shiyu Peng & Rushan Chai & Liangliang Zhang & Chaochun Zhang & Laichao Luo, 2024.
"Trade-Off Strategy for Usage of Phosphorus Fertilizer in Calcareous Soil-Grown Winter Wheat: Yield, Phosphorus Use Efficiency, and Zinc Nutrition Response,"
Agriculture, MDPI, vol. 14(3), pages 1-15, February.
Handle:
RePEc:gam:jagris:v:14:y:2024:i:3:p:373-:d:1345735
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:3:p:373-:d:1345735. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.