IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i12p2268-d1541217.html
   My bibliography  Save this article

D 3 -YOLOv10: Improved YOLOv10-Based Lightweight Tomato Detection Algorithm Under Facility Scenario

Author

Listed:
  • Ao Li

    (School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China)

  • Chunrui Wang

    (School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China)

  • Tongtong Ji

    (School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China)

  • Qiyang Wang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Tianxue Zhang

    (School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
    Institute of Medical Robotics, Shanghai Jiaotong University, Shanghai 200240, China)

Abstract

Accurate and efficient tomato detection is one of the key techniques for intelligent automatic picking in the area of precision agriculture. However, under the facility scenario, existing detection algorithms still have challenging problems such as weak feature extraction ability for occlusion conditions and different fruit sizes, low accuracy on edge location, and heavy model parameters. To address these problems, this paper proposed D 3 -YOLOv10, a lightweight YOLOv10-based detection framework. Initially, a compact dynamic faster network (DyFasterNet) was developed, where multiple adaptive convolution kernels are aggregated to extract local effective features for fruit size adaption. Additionally, the deformable large kernel attention mechanism (D-LKA) was designed for the terminal phase of the neck network by adaptively adjusting the receptive field to focus on irregular tomato deformations and occlusions. Then, to further improve detection boundary accuracy and convergence, a dynamic FM-WIoU regression loss with a scaling factor was proposed. Finally, a knowledge distillation scheme using semantic frequency prompts was developed to optimize the model for lightweight deployment in practical applications. We evaluated the proposed framework using a self-made tomato dataset and designed a two-stage category balancing method based on diffusion models to address the sample class-imbalanced issue. The experimental results demonstrated that the D 3 -YOLOv10 model achieved an m A P 0.5 of 91.8%, with a substantial reduction of 54.0% in parameters and 64.9% in FLOPs, compared to the benchmark model. Meanwhile, the detection speed of 80.1 FPS more effectively meets the demand for real-time tomato detection. This study can effectively contribute to the advancement of smart agriculture research on the detection of fruit targets.

Suggested Citation

  • Ao Li & Chunrui Wang & Tongtong Ji & Qiyang Wang & Tianxue Zhang, 2024. "D 3 -YOLOv10: Improved YOLOv10-Based Lightweight Tomato Detection Algorithm Under Facility Scenario," Agriculture, MDPI, vol. 14(12), pages 1-18, December.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2268-:d:1541217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/12/2268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/12/2268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Sun & Xiaofei He & Xiao Ge & Xiaohong Wu & Jifeng Shen & Yingying Song, 2018. "Detection of Key Organs in Tomato Based on Deep Migration Learning in a Complex Background," Agriculture, MDPI, vol. 8(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Wang & Jiang Liu & Lijia Xu & Peng Huang & Xiong Luo & Yan Hu & Zhiliang Kang, 2021. "Classification of Amanita Species Based on Bilinear Networks with Attention Mechanism," Agriculture, MDPI, vol. 11(5), pages 1-13, April.
    2. Piotr Boniecki & Maciej Zaborowicz & Agnieszka Pilarska & Hanna Piekarska-Boniecka, 2020. "Identification Process of Selected Graphic Features Apple Tree Pests by Neural Models Type MLP, RBF and DNN," Agriculture, MDPI, vol. 10(6), pages 1-9, June.
    3. Weidong Zhu & Jun Sun & Simin Wang & Jifeng Shen & Kaifeng Yang & Xin Zhou, 2022. "Identifying Field Crop Diseases Using Transformer-Embedded Convolutional Neural Network," Agriculture, MDPI, vol. 12(8), pages 1-19, July.
    4. Haiqing Wang & Shuqi Shang & Dongwei Wang & Xiaoning He & Kai Feng & Hao Zhu, 2022. "Plant Disease Detection and Classification Method Based on the Optimized Lightweight YOLOv5 Model," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
    5. Piotr Boniecki & Krzysztof Koszela & Krzysztof Świerczyński & Jacek Skwarcz & Maciej Zaborowicz & Jacek Przybył, 2020. "Neural Visual Detection of Grain Weevil ( Sitophilus granarius L.)," Agriculture, MDPI, vol. 10(1), pages 1-9, January.
    6. Peng Wang & Tong Niu & Dongjian He, 2021. "Tomato Young Fruits Detection Method under Near Color Background Based on Improved Faster R-CNN with Attention Mechanism," Agriculture, MDPI, vol. 11(11), pages 1-13, October.
    7. Chung-Liang Chang & Bo-Xuan Xie & Sheng-Cheng Chung, 2021. "Mechanical Control with a Deep Learning Method for Precise Weeding on a Farm," Agriculture, MDPI, vol. 11(11), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2268-:d:1541217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.