Author
Listed:
- Chunlin Xiong
(College of Public Administration and Law, Hunan Agricultural University, No. 1, Nongda Road, Furong District, Changsha 410128, China)
- Yilin Zhang
(College of Public Administration and Law, Hunan Agricultural University, No. 1, Nongda Road, Furong District, Changsha 410128, China)
- Weijie Wang
(College of Computer Science and Technology, Hengyang Normal University, Hengyang 421002, China)
Abstract
This study focuses on 19 provinces in the Yangtze River Basin of China. It gathers relevant data indicators from 2010 to 2021 and constructs an evaluation index system centered on agricultural science and technology innovation. The study evaluates the relationship between agricultural “science and technology innovation-economy-ecology” systems and identifies key obstacle factors using the obstacle degree model. The study draws the following conclusions: Firstly, the comprehensive development level index of the agricultural science and technology innovation system shows an overall linear upward trend (values range from 0.121 to 0.382). Secondly, the comprehensive development level index of the agricultural economic system exhibits an upward trend but with a relatively small overall magnitude (values range from 0.248 to 0.322). Thirdly, the comprehensive development level index of the agricultural ecological system demonstrates significant overall fluctuations, with notable regional disparities (values range from 0.384 to 0.414). Fourthly, the overall agricultural SEE (Science and technological innovation, Economy, Ecology) complex system exhibits a characteristic of “high coupling, low coordination”, identifying the main obstacle factors influencing agricultural SEECS based on a formulated approach. Subsequently, the following policy recommendations are proposed: Firstly, enhance the agricultural technological innovation system and promote green and efficient agricultural technology research and development. Secondly, to accelerate the transformation and upgrading of modern agriculture, achieving green and high-quality development of the agricultural economy. Thirdly, to strengthen agricultural ecological environment protection, laying a solid foundation for the healthy and sustainable development of agriculture.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:10:p:1844-:d:1502167. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.