IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i10p1767-d1493366.html
   My bibliography  Save this article

The Relationship between the Density of Winter Canola Stand and Weed Vegetation

Author

Listed:
  • Lucie Vykydalová

    (Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic)

  • Tomáš Jiří Kubík

    (Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic)

  • Petra Martínez Barroso

    (Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic)

  • Igor Děkanovský

    (University Hospital Brno, Jihlavská 20, 625 00 Brno, Czech Republic)

  • Jan Winkler

    (Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic)

Abstract

Canola ( Brassica napus L.) is an important oilseed crop that provides essential vegetable oil but faces significant competition from weeds that are influenced by various agronomic practices and environmental conditions. This study examines the complex interactions between canola stand density and weed intensity over three growing seasons, identifying a total of 27 weed species. It is important to establish a connection between the density of winter canola stands, the intensity of weeding and the response of individual weed species in real conditions. The case study was executed on plots located in the Přerov district (Olomouc region, Czech Republic). The assessment was carried out during two periods—autumn in October and spring in April. Canola plants (plant density) were counted in each evaluated area, weed species were identified, and the number of plants for each weed species was determined. Half of the plots were covered with foil before herbicide application to prevent these areas from being treated with herbicides. We used redundancy analysis (RDA) to evaluate the relationships between canola density and weed dynamics, both with and without herbicide treatment. The results show the ability of canola to compete with weeds; however, that is factored by the density of the canola stand. In dense stands (over 60 plants/m²), canola is able to suppress Galium aparine L., Geranium pusillum L., Lamium purpureum L., Papaver rhoeas L. and Chamomilla suaveolens (Pursh) Rydb. Nevertheless, there are weed species that grow well even in dense canola stands ( Echinochloa crus-galli (L.) P. Beauv., Phragmites australis (Cav.) Steud., Tripleurospermum inodorum (L.) Sch. Bip. and Triticum aestivum L.). These findings highlight the potential for using canola stand density as a strategic component of integrated weed management to reduce herbicide reliance and address the growing challenge of herbicide-resistant weed populations. This research contributes significantly to our understanding of the dynamics of weed competition in canola systems and informs sustainable agricultural practices for improved crop yield and environmental stewardship.

Suggested Citation

  • Lucie Vykydalová & Tomáš Jiří Kubík & Petra Martínez Barroso & Igor Děkanovský & Jan Winkler, 2024. "The Relationship between the Density of Winter Canola Stand and Weed Vegetation," Agriculture, MDPI, vol. 14(10), pages 1-15, October.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:10:p:1767-:d:1493366
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/10/1767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/10/1767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhai, Yijie & Zhang, Tianzuo & Ma, Xiaotian & Shen, Xiaoxu & Ji, Changxing & Bai, Yueyang & Hong, Jinglan, 2021. "Life cycle water footprint analysis of crop production in China," Agricultural Water Management, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darzi-Naftchali, Abdullah & Motevali, Ali & Keikha, Mahdi, 2022. "The life cycle assessment of subsurface drainage performance under rice-canola cropping system," Agricultural Water Management, Elsevier, vol. 266(C).
    2. Zhang, Ping & Zhuo, La & Li, Meng & Liu, Yilin & Wu, Pute, 2023. "Assessment of advanced bioethanol potential under water and land resource constraints in China," Renewable Energy, Elsevier, vol. 212(C), pages 359-371.
    3. Yansong Zhang & Yujie Wei & Yu Mao, 2023. "Sustainability Assessment of Regional Water Resources in China Based on DPSIR Model," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    4. Li, Guang & Li, Na & Liu, Fan & Zhou, Xing, 2022. "Development of life cycle water footprint for lignocellulosic biomass to biobutanol via thermochemical method," Renewable Energy, Elsevier, vol. 198(C), pages 222-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:10:p:1767-:d:1493366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.