Author
Listed:
- Liqiang Dong
(Liaoning Rice Research Institute, Shenyang 110101, China)
- Tiexin Yang
(Liaoning Rice Research Institute, Shenyang 110101, China)
- Rui Li
(Liaoning Rice Research Institute, Shenyang 110101, China)
- Liang Ma
(Liaoning Rice Research Institute, Shenyang 110101, China)
- Yingying Feng
(Liaoning Rice Research Institute, Shenyang 110101, China)
- Yuedong Li
(Liaoning Rice Research Institute, Shenyang 110101, China)
Abstract
Mechanical transplanting has become an important part of modern Chinese rice production, and an inadequate sowing rate severely inhibits rice seedling growth and development. Precision drill sowing is an effective method for obtaining higher quality seedlings during machine transplanting. There is a lack of systematic research on the precision drilling of rice. Therefore, we carried out research on the quality of machine-transplanted seedlings and precision drill sowing transplantation. A greenhouse experiment (Liaoning Rice Research Institute) and field experiment (Sujiatun District, Shenyang City, Liaoning Province, China) were conducted between 2020 and 2021 to analyze the influence of precision drill sowing on rice growth and yield. Precision drill sowing was conducted at four sowing rates (3400, 3600, 3800, and 4000 seeds/tray), and traditional broadcasting was also conducted at a sowing rate of 4000 seeds/tray. We evaluated the seedling rice quality, physiological and biochemical characteristics and transplanting quantity. The results indicated that precision drill sowing at a sowing rate of 3400 seeds/tray resulted in the highest plumpness value (0.18) and seedling strength index (0.42) of individual plants. However, the empty hill rate was as high as 3.05%, which did not satisfy the field seedling number requirement. Precision drill sowing at a sowing rate of 4000 seeds/tray resulted in the lowest physiological (the average levels of SOD, POD and soluble protein were 311.78 µg/g, 8.25 µg/g and 1.28 µg/g) and biochemical indices of individual plants. The damaged seedling rate increased by 2.07%, and the dead seedling rate increased by 0.25%, resulting in poor seedling and transplanting quality. In this study, 3800 seeds/tray was the best option and had the highest yields of 10,776.60 kg/ha and 10,730.85 kg/ha over the two years. This sowing approach performs well in terms of field transplanting, provides a balance point between seedling number and quality and is conducive to rice yield production. The results of this study are important for improving rice seedling quality, enhancing field transplanting quantity and increasing rice yield and food security.
Suggested Citation
Liqiang Dong & Tiexin Yang & Rui Li & Liang Ma & Yingying Feng & Yuedong Li, 2024.
"Grain Yield, Rice Seedlings and Transplanting Quantity in Response to Decreased Sowing Rate under Precision Drill Sowing,"
Agriculture, MDPI, vol. 14(10), pages 1-18, October.
Handle:
RePEc:gam:jagris:v:14:y:2024:i:10:p:1745-:d:1491829
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:10:p:1745-:d:1491829. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.