IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2023i1p74-d1310717.html
   My bibliography  Save this article

Maize Leaf Compound Disease Recognition Based on Attention Mechanism

Author

Listed:
  • Ping Dong

    (College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China)

  • Kuo Li

    (College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China)

  • Ming Wang

    (College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China)

  • Feitao Li

    (College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China)

  • Wei Guo

    (College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China)

  • Haiping Si

    (College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China)

Abstract

In addition to the conventional situation of detecting a single disease on a single leaf in corn leaves, there is a complex phenomenon of multiple diseases overlapping on a single leaf (compound diseases). Current research on corn leaf disease detection predominantly focuses on single leaves with single diseases, with limited attention given to the detection of compound diseases on a single leaf. However, the occurrence of compound diseases complicates the accuracy of traditional deep learning algorithms for disease detection, necessitating the exploration of new models for the identification of compound diseases on corn leaves. To achieve rapid and accurate identification of compound diseases in corn fields, this study adopts the YOLOv5s model as the base network, chosen for its smaller size and faster detection speed. We propose a corn leaf compound disease recognition method, YOLOv5s-C3CBAM, based on an attention mechanism. To address the challenge of limited data for corn leaf compound diseases, a CycleGAN model is employed to generate synthetic images. The scarcity of real data is thereby mitigated, facilitating the training of deep learning models with sufficient data. The YOLOv5s model is selected as the base network, and an attention mechanism is introduced to enhance the network’s focus on disease lesions while mitigating interference from compound diseases. This augmentation results in improved recognition accuracy. The YOLOv5s-C3CBAM compound disease recognition model, incorporating the attention mechanism, achieves an average precision of 83%, an F1 score of 81.98%, and a model size of 12.6 Mb. Compared to the baseline model, the average precision is improved by 3.1 percentage points. Furthermore, it outperforms Faster R-CNN and YOLOv7-tiny models by 27.57 and 2.7 percentage points, respectively. This recognition method demonstrates the ability to rapidly and accurately identify compound diseases on corn leaves, offering valuable insights for future research on precise identification of compound agricultural crop diseases in field conditions.

Suggested Citation

  • Ping Dong & Kuo Li & Ming Wang & Feitao Li & Wei Guo & Haiping Si, 2023. "Maize Leaf Compound Disease Recognition Based on Attention Mechanism," Agriculture, MDPI, vol. 14(1), pages 1-22, December.
  • Handle: RePEc:gam:jagris:v:14:y:2023:i:1:p:74-:d:1310717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/1/74/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/1/74/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongliang Guo & Mingyang Li & Ruizheng Hou & Hanbo Liu & Xudan Zhou & Chunli Zhao & Xiao Chen & Lianxing Gao, 2023. "Sample Expansion and Classification Model of Maize Leaf Diseases Based on the Self-Attention CycleGAN," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    2. Huawei Yang & Yinzeng Liu & Shaowei Wang & Huixing Qu & Ning Li & Jie Wu & Yinfa Yan & Hongjian Zhang & Jinxing Wang & Jianfeng Qiu, 2023. "Improved Apple Fruit Target Recognition Method Based on YOLOv7 Model," Agriculture, MDPI, vol. 13(7), pages 1-21, June.
    3. Yanxin Hu & Gang Liu & Zhiyu Chen & Jiaqi Liu & Jianwei Guo, 2023. "Lightweight One-Stage Maize Leaf Disease Detection Model with Knowledge Distillation," Agriculture, MDPI, vol. 13(9), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rihong Zhang & Zejun Huang & Yuling Zhang & Zhong Xue & Xiaomin Li, 2023. "MSGV-YOLOv7: A Lightweight Pineapple Detection Method," Agriculture, MDPI, vol. 14(1), pages 1-16, December.
    2. Feng Xiao & Haibin Wang & Yueqin Xu & Zhen Shi, 2023. "A Lightweight Detection Method for Blueberry Fruit Maturity Based on an Improved YOLOv5 Algorithm," Agriculture, MDPI, vol. 14(1), pages 1-18, December.
    3. Kunpeng Zhao & Jinyang Li & Wenqiang Shi & Liqiang Qi & Chuntao Yu & Wei Zhang, 2024. "Field-Based Soybean Flower and Pod Detection Using an Improved YOLOv8-VEW Method," Agriculture, MDPI, vol. 14(8), pages 1-15, August.
    4. Mingming Liu & Yinzeng Liu & Qihuan Wang & Qinghao He & Duanyang Geng, 2024. "Real-Time Detection Technology of Corn Kernel Breakage and Mildew Based on Improved YOLOv5s," Agriculture, MDPI, vol. 14(5), pages 1-16, May.
    5. Yi Shao & Wenzhong Yang & Jiajia Wang & Zhifeng Lu & Meng Zhang & Danny Chen, 2024. "Cotton Disease Recognition Method in Natural Environment Based on Convolutional Neural Network," Agriculture, MDPI, vol. 14(9), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2023:i:1:p:74-:d:1310717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.